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Motivations

stability, reachability (vs. safety/invariance) of autonomous models

ẋ = f (x)

termination, assertion violation of SW programs

while g(x), x+ := f(x)

non-linear (e.g., polynomial) dynamics/updates

stochastic, controlled models

use of sufficient approaches: synthesis of certificates, e.g.

Lyapunov functs V (x), barrier certificates B(x), ranking functs η(x)

model abstractions f̂ (x)

sound and automated synthesis (vs. numerical, manual)
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Goals

new approach to synthesise certificates for
stability/safety/termination/. . .

new approach is

▶ automated: minimal user input
▶ sound: SMT-verified
▶ in general, lacks completeness

FOSSIL, a software tool

variations, extensions, applications . . .
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Decision problems: SAT and SMT

SAT is a decision problem (can be formulated as a yes/no question)

finding satisfying assignment of Boolean functions

e.g., assume xi Boolean,

∃x1, x2, x3 : (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ ¬x1

SMT: decision problem for logical formulae within one (or
combination of) theories

e.g., assume xi integers,

∃x1, x2 : x1 ≥ 0⇒ 3x1 + 2x2 + 1 > 0

instance: theory of arithmetics over real closed fields (e.g., with
polynomial functions)
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Decision problems: SAT and SMT

SAT is hard! Let alone SMT!

yes but . . . ever more powerful and numerous SW tools, of industrial
relevance

Number of problems solved

Ti
m

e

2002

2004

2009

2011

7

Progress of SAT solvers in SAT competition

[ credit: E. Polgreen ]

breakthroughs: algorithmic improvements over DPLL/CDCL +
applications
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From decision to synthesis problems

consider problem:
xi ∈ Z integers, F : Z× Z→ Z;

∃F ,∀x1, x2,
F (x1, x2) ≥ x1 ∧ F (x1, x2) ≥ x2 ∧ (F (x1, x2) = x1 ∨ F (x1, x2) = x2)

(F = max{x1, x2})

synthesis: constructive, optimisation-based, inductive
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Conditions for Lyapunov function V (x)
assume xe ∈ Rn is an equilibrium, f (xe) = 0

ensure asymptotic stability of xe in D ⊆ Rn

1 lower bound:
V (xe) = 0 (1)

2 positive definiteness:

V (x) > 0, ∀x ∈ D \ {xe} (2)

3 negative Lie derivative:

V̇ (x) = ∇V (x) · f (x) < 0, ∀x ∈ D \ {xe} (3)

no general, effective method: potential search within function space
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Lyapunov synthesis problem

solve following synthesis problem:

∃V : D → R ∀x ∈ D s.t. conditions (1) ∧ (2) ∧ (3) are SAT

inductive synthesis → “guess and check”

1. sample (finite) set S ⊂ D

2. “guess” V (s) that satisfies (1) ∧ (2) ∧ (3) on points s ∈ S

3. “check” either V (x) valid over dense D or counterexample c :
query SMT solver whether ∃c ∈ D : ¬(1) ∨¬(2) ∨¬(3)

4. S ← S ∪ c , loop back to 2
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Counterexample-guided inductive synthesis (CEGIS)

1. Learner: generates candidates V over finite set “guess”

2. Verifier: certifies validity on D, or provides c-example(s) c “check”

Learner Verifier

V

c

f (x),D

V
valid

sound but not complete: search space for V infinite (as domain D)
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Synthesis of Lyapunov functions from templates1

work with fixed, given polynomial templates

V (x) =
c∑

l=1

xTl Pl xl

c - degree that can be tuned

“guess” - candidates generated by SMT solver call

enforcing Lyapunov conditions in (1), (2), (3) on S

alternatively, solution of optimisation problem (via Gurobi)

“check” via SMT solver on non-linear formulae over reals

Z3, dReal: outcomes provably correct, sound and (for Z3) complete

1
D. Ahmed, A. Peruffo and A. Abate, “Automated and Sound Synthesis of Lyapunov Functions with SMT Solvers,”

TACAS20, LNCS 12078, pp. 97-114, 2020.
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Experimental results

n Gurobi-CEGIS Z3-CEGIS

3
4
5
6
7
8
9
10

Iterations Time [sec] OOT

3 [3, 3] 0.48 [0.33, 0.77] –
3.10 [3, 4] 0.53 [0.36, 1.20] –
4.15 [4, 5] 1.33 [1.08, 1.97] –
6.99 [4, 10] 3.88 [2.41, 4.97] –
8.56 [4, 12] 12.64 [2.9, 62.3] –
9.14 [3, 13] 21.50 [3.9, 114.16] 1
15.72 [3, 32] 29.98 [3.87, 78.5] 2
18.45 [3,41] 40.63 [6.17, 46.65] 5

Iterations Time [sec] OOT

3.03 [3, 4] 0.49 [0.4, 0.70] –
5.93 [4, 7] 0.68 [0.54,1.07] –
7.38 [5, 12] 1.67 [1.10, 3.03] –
9.10 [6, 10] 7.48 [2.40, 54.44] –
12.88 [5, 17] 17.63 [5.41, 20.3] 1
16.2 [3, 25] 23.91 [4.05, 35.08] 1
22.47 [4, 35] 34.41 [5.67, 48.96] 5
27.25 [5, 47] 44.63 [6.32, 101.2] 7

Gurobi-CEGIS vs. Z3-CEGIS

N = 100 randomly generated n-dimensional linear models

OOT = number of runs (out of N) not finishing within 180 [sec]

time: average [min, max] performance [sec]
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Lyapunov functions as neural networks2

learner trains shallow neural network

V (x) = W2 · σ1(W1x + b1)

generality and flexibility

(univ. function approximator)

alternative activation fcns (σ1)

loss function enforces Lyapunov
conditions in (1), (2), (3):

σ1

σ1

W1 W2

L(S) =
∑

s∈S
max{0,−V (s)}+

∑

s∈S
max{0, V̇ (s)}

loss function L is “pretty good” proxy of synthesis formula

2
A. Abate, D. Ahmed, M. Giacobbe and A. Peruffo “Automated Formal Synthesis of Lyapunov Neural Networks,” IEEE

Control Systems Letters, 5 (3), 773-778, 2020.
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From learner to verifier, and back
communication btw Learner ↔ Verifier is crucial

→ translate Neural Network into formula

V (x) = W2 · σ1(W1x + b1)

V̇ (x) = ∇V (x) · f (x) = W2 · σ′
1(W1x + b1) ·W1 · f (x)

SMT engine accepts negation of synthesis specification, namely

∃x s.t. x ∈ D \ {xe} ∧ V (x) ≤ 0 ∨ V̇ (x) ≥ 0

outcomes:
1 sat: counter-example c and loop back to Learner, now with S ∪ c
2 unsat: V is valid (proper Lyapunov fcn)

← extract more details around c-ex c, provide more info to Learner
1 generate random samples around c
2 unfold model trajectories from c
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Experimental results

non-linear models that do not admit global polynomial V (x)

vs. related work, provided larger domains in comparable runtimes

LNN LNN NLC3 NLC CBS4 CBS SOS5 SOS
Time r Time Domain Time r Time r

12.01 500 6.28 1 0.22 1 6.67 800
0.29 100 5.45 1 0.30 1 7.76 25
0.32 1000 54.12 1 2.22 1 11.80 OOT
33.27 1000 37.80 1 0.42 1 9.65 OOT

Table: Comparison between proposed approach (LNN), NLC and CBS
approaches, and SOSTOOLS: total Time (guess and check) [sec], Domain D
(radius r). Timeouts = OOT.

3
Chang, Y.C., Roohi, N. and Gao, S., “Neural Lyapunov Control”, NeurIPS, pp. 3245-3254, 2019.

4
D. Ahmed, A. Peruffo and A. Abate, “Automated and Sound Synthesis of Lyapunov Functions with SMT Solvers,”

TACAS20, LNCS 12078, pp. 97-114, 2020.
5
A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, and P. A. Parrilo. SOSTOOLS: Sum of squares

optimization toolbox for MATLAB, 2013.
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Example: Synthesis of Lyapunov function in 3 CEGIS loops
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Conditions for barrier certificate B(x)

from notion of stability (equilibria) to safety (set invariance)

consider sets X0 (initial) and Xu (unsafe)

ensure there exists no trajectory starting in X0 entering Xu, over D

1 negativity in initial set X0:

B(x) ≤ 0 ∀x ∈ X0 (4)

2 positivity in unsafe set XU :

B(x) > 0 ∀x ∈ XU (5)

3 set invariance property via Lie derivative:

Ḃ(x) < 0 ∀x s.t.B(x) = 0 (6)
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Barrier certificates as neural nets3

barrier certificates often require a more arbitrary (non-linear)
structure than Lyapunov functions (cf. shapes of X0,XU)

neural networks provide powerful, rich template for diverse potential
candidates:

▶ canonical activations such as σ(x) = xn

▶ more neuro-typical activation functions such as σ(x) = tanh(x) and
σ(x) = ln(1 + exp(x))

▶ use of leaky and saturated ReLU’s

3
A. Abate, D. Ahmed and A. Peruffo, “Automated Formal Synthesis of Neural Barrier Certificates for Dynamical Models,”

TACAS21, LNCS 12651, pp. 370–388, 2021.
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Experimental results

Benchmark CEGIS (this work) BC4 SOS5

Darboux
Exponential
Obstacle
Polynomial
Hybrid mod
4-d ODE
6-d ODE
8-d ODE

Learn Verify Samples Iters

31.6 0.01 0.5 k 2
15.9 0.07 1.5 k 2
55.5 1.83 2.0 k 9
64.5 4.20 2.3 k 2
0.58 2.01 0.5 k 1
29.31 0.07 1 k 1
89.52 1.61 1 k 3
104.5 82.51 1 k 3

Learn Verify Samples

54.9 20.8 65 k
234.0 11.3 65 k
3165.3 1003.3 2097 k
1731.0 635.3 65 k

– – –
– – –
– – –
– – –

Synth Verify

× –
× –
× –
8.10 ×
12.30 0.11
12.90 OOT
16.60 OOT
26.10 OOT

time for Learning and Verification steps in [sec]

‘Samples’ = size of input data for Learner (in thousands)

‘Iters’ = number of iterations of CEGIS loop

× = synthesis or verification failure, OOT = verification timeout
4
H. Zhao, X. Zeng, T. Chen, and Z. Liu. Synthesizing Barrier Certificates Using Neural Networks. In Proceedings of the

23rd International Conference on Hybrid Systems: Computation and Control, HSCC, 2020.
5
A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, and P. A. Parrilo. SOSTOOLS: Sum of squares

optimization toolbox for MATLAB, 2013.
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Synthesised barrier certificates - examples

ẋ = y + 2xy ,

ẏ = −x + 2x2 − y2 [10] · Linear
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Synthesised barrier certificates - examples

ẋ = exp(−x) + y − 1,
ẏ = − sin(x)2 [20] · Softplus

Abate et al (CS, Oxford, www.oxcav.org) Formal Synthesis with Neural Templates April 2023 24 / 58



Synthesised barrier certificates - examples

ẋ = y ,

ẏ = −x − y +
1

3
x3 [20, 20] · Sigmoid, Sigmoid
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Software Tool - FOSSIL6

Formal Synthesis of Lyapunov Functions and Barrier Certificates using
Neural Networks

▶ CEGIS with NN templates
▶ two SMT engines: Z3, dReal
▶ improved Learner/Verifier communication

▶ supports non-polynomial dynamics with multiple equilibria
▶ handles continuous- and discrete-time models
▶ scalable and robust

▶ easy-to-use Jupyter-based user interface

https://github.com/oxford-oxcav/fossil

6
A. Abate, D. Ahmed, A. Edwards, M. Giacobbe and A. Peruffo, “FOSSIL: A Software Tool for the Formal Synthesis of

Lyapunov Functions and Barrier Certificates using Neural Networks,” HSCC, pp. 1-11, 2021.
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FOSSIL - architecture

Learner

Translator

Consolidator

Verifier

CEGIS

N (θ)

Candidate

cex

S ← S ∪ cex+

valid

Out of

Loops

Translator
▶ translates numerical neural network into symbolic candidate
▶ trade-off precision of symb variables vs tractability of verification

Consolidator
▶ samples around counterexample → more data to learner
▶ computes trajectory of maximum constraint violation
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FOSSIL - robustness
random initialisation influences results
variation of NN width (h) and domain radius
average times and number of failures for Lyapunov synthesis with

{
ẋ = −x + xy

ẏ = −y
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FOSSIL - robustness

model dynamics {
ẋ = y + 2xy ,

ẏ = −x + 2x2 − y2

sets
X0 = {0 ≤ x ≤ 1, 1 ≤ y ≤ 2}, Xu = {x + y2 ≤ 0}

Table: Minimum and average running times and number of failures (in
parenthesis), out of 25 runs, for barrier synthesis task.

Hidden Neurons 2 10 50 100

Min Time 18.11 21.72 61.06 173.01
Avg Time (Fail) 35.46 (0) 33.27 (0) 73.77 (0) 217.68 (0)
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FOSSIL - tests on benchmarks from literature

Benchmark Dim Iters Time N-Net Verifier

nonpoly0 2 1 0.22 2·[ϕ2] dReal

nonpoly1 2 1 1.54 20·[ϕ1, ϕ2] Z3

nonpoly2 3 1 1.63 10·[ϕ1, ϕ2] Z3

nonpoly3 3 1 12.06 3·[ϕ2] Z3

poly1 3 1 0.81 5·[ϕ2] dReal

poly2 2 3 19.13 10·[ϕ2] Z3

poly3 2 3 17.25 5·[ϕ2] dReal

poly4 2 2 5.88 5·[ϕ2] dReal

barr1 2 1 26.85 10·[ϕ1, dReal
ϕ1,2, ϕ1]

barr2 2 1 0.92 10·[tanh] dReal

barr3 2 2 10.03 20·[tanh] dReal

hy-lyap 2 1 2.24 10·[ϕ2] Z3

hy-barr 2 1 8.46 3·[ϕ1,2] Z3

hi-ord4 4 3 98.94 20·[ϕ1] dReal

hi-ord6 6 1 29.39 10·[ϕ1] dReal

hi-ord8 8 1 41.72 10·[ϕ1] dReal
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FOSSIL - ongoing extensions
class of properties:

∀ξ(t0) ∈ XI ,∃T ∈ R+, ∀t ∈ [t0,T ], ∀τ ≥ T :

ξ(t) ̸∈ XU ∧ ξ(T ) ∈ XG ∧ ξ(τ) ∈ XF

encompasses stab/reach/safety/invariance/reach-avoid/RSWA/. . .

SoundCertificate Synthesis

aDepartment of Computer Science, University of Oxford, UK

bTU Delft, The Netherlands

Alessandro Abate a, Alec Edwards a, Andrea Peru↵o b

Abstract

we are great at what we do [1]
page limit: 12

Key words: control systems; lyapunov theory; machine learning; formal verification

1 Introduction

2 Preliminaries

In the following, we outline classical notions of system
and control theory for continuous time models.

2.1 Dynamical Models

We consider n-dimensional dynamical models described
by

ẋ(t) =
dx

dt
= f(x) + g(x), x(0) = x0 2 XI ⇢ X (1)

where X ✓ Rn is a set defining the state space of the
system, f : X ! Rn is a continuous vector field describ-
ing the model dynamics and g : X ! Rn is a continuous
vector field describing a control law based on the system
state.

The goal of the present work is to prove that the dy-
namics described by ẋ satisfy some desired specification.
This involves finding some control law g(x) to guide the
open loop dynamics f(x) to satisfaction.

2.2 Certification Task

Our next task is to construct a problem statement in the
form of an overall certification task. This is the property

Email addresses: alec.edwards@cs.ox.ac.uk (Alec
Edwards), (Andrea Peru↵o).

XI

XF

XG

XU

Fig. 1. Illustration of trajectories that do (black) and do not
(red, dashed) satisfy the specification in Eq. (2).

for which we seek to ensure any given dynamical model
satisfies.

We describe our specification as follows: trajectories be-
gin in the initial set. Within any time (finite or un-
bounded), trajectories reach the goal set while avoiding
the unsafe set. After this point, they remain in the final
set. This property in Figure 1, and is formally expressed
as follows

8⇠(t0) 2 XI , 9T 2 R+, 8t 2 [t0, T ], 8⌧ � T :

⇠(t) 62 XU ^ ⇠(T ) 2 XG ^ ⇠(⌧) 2 XF (2)

Notably, we do not constrain the time T to be finite.
This specification also implies the following relationships

Preprint submitted to Automatica 2022

Figure: Black trajectory satisfies, red ones violate property.
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FOSSIL - ongoing extensions

dynamical models with inputs (a.k.a., external non-determinism)

→ synthesis of “control certificates” (e.g., control LFs, BCs, . . . - well
known in literature)

approach: control policies are NN-templated,

synthesis follows from above (albeit being more complex)

(SW to be released hopefully soon)
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Extension: discrete-time, probabilistic models

discrete-time models (e.g. SW programs), x+ = f (x)

same Lyapunov conditions, except concerning “next step”:

V (f (x)) < V (x), ∀x ∈ D \ {xe}

stochastic models: same story, except for “next step”-condition is in
expectation:

E[V (f (x)) | x ] < V (x), ∀x ∈ D \ {xe}
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Program termination7

discrete-time programs

Deterministic Termination

while (red > 0 or blue > 0) 
if ((red + blue) % 2 == 0) 
red = red - 1 
else 
blue = blue - 1

(10, 10) (9, 10)

(8, 9)(9, 9)

(8, 8) (7, 8)

(0, 0)

(0, 1)

…

halt

what is the probability that allowable traces terminate?

PAST - positive, almost-sure termination:

E [execution steps] <∞

PAST implies a.s.-termination (w.p. 1)

7
D. Roy, M. Giacobbe, and A. Abate, “Learning Probabilistic Termination Proofs,” CAV21, LNCS 12760, pp. 3–26, 2021.
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Program termination7

discrete-time programs
Probabilistic Termination

while (red > 0 or blue > 0) 
p ~ Bernoulli(0.01) 
if (p == 1) 
red = red - 1 
else 
blue = blue - 1

p ~ Bernoulli(0.01)

p = 0

0.99

p = 1

0.01

what is the probability that allowable traces terminate?

PAST - positive, almost-sure termination:

E [execution steps] <∞

PAST implies a.s.-termination (w.p. 1)

7
D. Roy, M. Giacobbe, and A. Abate, “Learning Probabilistic Termination Proofs,” CAV21, LNCS 12760, pp. 3–26, 2021.
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Program termination7

discrete-time programsProbabilistic Termination
while (red > 0 or blue > 0) 
p ~ Bernoulli(0.01) 
if (p == 1) 
red = red - 1 
else 
blue = blue - 1

(2, 2) p=1→ (1, 2) p=0→ (1, 1) p=0→ (1, 0) p=1→ (0, 0) (halt)

(2, 2) p=0→ (2, 1) p=0→ (2, 0) p=0→ (2, −1) p=0→ …

X0 = (2, 2)

what is the probability that allowable traces terminate?

PAST - positive, almost-sure termination:

E [execution steps] <∞

PAST implies a.s.-termination (w.p. 1)

7
D. Roy, M. Giacobbe, and A. Abate, “Learning Probabilistic Termination Proofs,” CAV21, LNCS 12760, pp. 3–26, 2021.
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Program termination7

discrete-time programsProbabilistic Termination
while (red > 0 or blue > 0) 
p ~ Bernoulli(0.01) 
if (p == 1) 
red = red - 1 
else 
blue = blue - 1

(2, 2) p=1→ (1, 2) p=0→ (1, 1) p=0→ (1, 0) p=1→ (0, 0) (halt)

(2, 2) p=0→ (2, 1) p=0→ (2, 0) p=0→ (2, −1) p=0→ …

X0 = (2, 2)

what is the probability that allowable traces terminate?

PAST - positive, almost-sure termination:

E [execution steps] <∞

PAST implies a.s.-termination (w.p. 1)
7
D. Roy, M. Giacobbe, and A. Abate, “Learning Probabilistic Termination Proofs,” CAV21, LNCS 12760, pp. 3–26, 2021.
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Ranking functions for program termination

probabilistic programs in discrete time

certificates for PAST: ranking super-martingales (RSMs) η

seek η : x → R, where x are program configs, such that
1 η(x) ≥ K
2 E [η(Xt+1)|Xt = x ] ≤ η(x)− ϵ, ϵ > 0,

conditions above entail
1 bound (K ) from below
2 decrease in expectation at each iteration by at least an ϵ
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CEGIS-based synthesis of RSMs

learner trains ReLU-activated NN

lower bound on NN (K) satisfied by construction

NN ought to “decrease in expectation” from program state x

→ loss at state x is max {E [η(Xt+1)|Xt = x ]− η(x) + ϵ, 0}
approximate expectation by Monte Carlo estimate from sampled
executions x ′ from program state x :

→ loss at state x is max
{

1
|P′|

∑
x ′∈P′ η(x ′)− η(x) + ϵ, 0

}

smoothen loss (easier derivative)

→ loss at state x is softplus
{

1
|P′|

∑
x ′∈P′ η(x ′)− η(x) + ϵ, 0

}
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CEGIS-based synthesis of RSMs - example

Probabilistic Termination
while (red > 0 or blue > 0) 
p ~ Bernoulli(0.01) 
if (p == 1) 
red = red - 1 
else 
blue = blue - 1

(2, 2) p=1→ (1, 2) p=0→ (1, 1) p=0→ (1, 0) p=1→ (0, 0) (halt)

(2, 2) p=0→ (2, 1) p=0→ (2, 0) p=0→ (2, −1) p=0→ …

X0 = (2, 2)

synthesised RSM: η(red, blue) = max {red, 0}+max {blue, 0}
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CEGIS-based synthesis of RSMs - benchmarks8

admittedly slower than existing tools

robust (cf. success rate)

generalises well (d = discrete, c = continuous distributions;

SOR = sum of ReLU, SOS = sum of squares)
8
D. Roy, M. Giacobbe, and A. Abate, “Learning Probabilistic Termination Proofs,” CAV21, LNCS 12760, pp. 3–26, 2021.
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CEGIS-based synthesis of RSMs - benchmarks8

generalises well to non-linear programs

ongoing work:
1 more general program control-flow, e.g. nested loops
2 use of better sampling techniques, deeper networks, symbolic post

expectations
3 problems beyond PAST: quantitative verification

8
D. Roy, M. Giacobbe, and A. Abate, “Learning Probabilistic Termination Proofs,” CAV21, LNCS 12760, pp. 3–26, 2021.
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Quantitative probabilistic verification9

probabilistic programs on real-valued variables

quantitative verification questions, i.e. probabilistic reachability
analysis

▶ termination and assertion violation
▶ safety and invariance verification

certificates: neural indicating super-martingales (ISMs)

→ upper bound on probabilistic reachability

(quite a few alternatives in literature)

post expectation: program-aware vs -agnostic

tight bounds, beyond linear certificates

9
A. Abate, A. Edwards, M. Giacobbe, H. Punchihewa, and D. Roy, “Quantitative Verification With Neural Networks For

Probabilistic Programs and Stochastic Systems,” arXiv:2301.06136, 2023.
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Neural ISMs - benchmarks
Benchmark Farkas’ Quantitative Neural Certificates Network

Lemma Program-Agnostic Program-Aware Arch.

p p Success Ratio p Success Ratio

persist 2d - ≤ 0.1026 0.9 ≤ 0.1175 0.9 (3, 1)
faulty marbles - ≤ 0.0739 0.9 ≤ 0.0649 0.8 3
faulty unreliable - ≤ 0.0553 0.9 ≤ 0.0536 1.0 3
faulty regions - ≤ 0.0473 0.9 ≤ 0.0411 0.9 (3, 1)

cliff crossing ≤ 0.4546 ≤ 0.0553 0.9 ≤ 0.0591 0.8 4
repulse ≤ 0.0991 ≤ 0.0288 1.0 ≤ 0.0268 1.0 3
repulse uniform ≤ 0.0991 ≤ 0.0344 1.0 - - 2
repulse 2d ≤ 0.0991 ≤ 0.0568 1.0 ≤ 0.0541 1.0 3
faulty varying ≤ 0.1819 ≤ 0.0864 1.0 ≤ 0.0865 1.0 2
faulty concave ≤ 0.1819 ≤ 0.1399 1.0 ≤ 0.1356 0.9 (3, 1)

fixed loop ≤ 0.0091 ≤ 0.0095 1.0 ≤ 0.0094 1.0 1
faulty loop ≤ 0.0181 ≤ 0.0195 1.0 ≤ 0.0184 1.0 1
faulty uniform ≤ 0.0181 ≤ 0.0233 1.0 ≤ 0.0221 1.0 1
faulty rare ≤ 0.0019 ≤ 0.0022 1.0 ≤ 0.0022 1.0 1
faulty easy1 ≤ 0.0801 ≤ 0.1007 1.0 ≤ 0.0865 1.0 1
faulty ndecr ≤ 0.0561 ≤ 0.0723 1.0 ≤ 0.0630 1.0 1
faulty walk ≤ 0.0121 ≤ 0.0173 1.0 ≤ 0.0166 1.0 1

Table: Neural ISMs vs Farkas Lemma; p - average prob bound from certificate;
Success Ratio - terminating runs out of 10 repeats in CEGIS; NN architecture -
(h1, h2) are 2 hidden layers.
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Neural ISMs - benchmarks

Benchmark Farkas’ Quantitative Neural Certificates

Lemma Program-Agnostic Program-Aware

Time Learn Time Verify Time Learn Time Verify Time

persist 2d - 169.14 85.31 44.96 74.90
faulty marbles - 114.24 29.23 15.86 28.68
faulty unreliable - 123.85 45.48 18.34 33.97
faulty regions - 17.92 35.85 17.55 32.38

cliff crossing 0.11 134.61 19.02 21.27 29.07
repulse 0.19 16.65 5.00 6.49 3.74
repulse uniform 0.19 21.28 14.18 - -
repulse 2d 0.12 122.92 64.54 15.75 47.70
faulty varying 0.36 21.74 5.06 4.71 3.28
faulty concave 0.39 49.12 13.37 13.49 7.82

fixed loop 0.15 14.16 3.14 3.34 2.43
faulty loop 0.16 25.52 3.81 3.73 2.66
faulty uniform 0.34 20.20 1.91 6.75 1.33
faulty rare 0.27 25.52 4.27 3.71 2.96
faulty easy1 0.31 104.20 12.78 4.95 7.51
faulty ndecr 0.33 104.89 9.06 5.37 4.66
faulty walk 0.32 15.08 4.00 6.97 3.33

Table: Neural ISMs vs Farkas Lemma - Runtimes. Obviously slower! Learning
takes time.
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Model hybridisations

motivation: safety verification of non-linear dynamical systems
ẋ = f (x) over x ∈ X ⊂ Rn, is in general hard, not automated

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1 0 1
1

0

1





ẋ = −y − 1.5x2 − 0.5x3 − 0.5

ẏ = 3x − y

X = [−1, 1]2





ẋ = x2 + y

ẏ =
3
√
x2 − x

X = [−1, 1]2
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Model hybridisations

motivation: safety verification of non-linear dynamical systems
ẋ = f (x) over x ∈ X ⊂ Rn, is in general hard, not automated

leverage formal abstractions for verification

namely, simpler models encapsulating original dynamics (sim, bisim)
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Model hybridisations

motivation: safety verification of non-linear dynamical systems
ẋ = f (x) over x ∈ X ⊂ Rn, is in general hard, not automated

leverage formal abstractions for verification

namely, simpler model encapsulating original dynamics

hybridisation: within X , convert f (x) to hybrid system H with
multiple partitions, where

each partition has own flow f̃ (x) & transitions to other parts

upper-bound ϵ to error, so that

ẋ = f̃ (x) + d , ∥d∥ ≤ ϵ, x ∈ X
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Model hybridisations

motivation: safety verification of non-linear dynamical systems
ẋ = f (x) over x ∈ X ⊂ Rn, is in general hard, not automated

leverage formal abstractions for verification

namely, simpler model encapsulating original dynamics

hybridisation: within X , convert f (x) to hybrid system H with
multiple partitions, where

each partition has own flow f̃ (x) & transitions to other parts

more partitions → more complex (larger) abstraction

! mesh size & shape important in achieving low error bound ϵ
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Model hybridisations as “neural abstractions”10

...
x

...
...

ẋ

W1 W2b1 b2

ReLU

W11x + b11 = 0

W12x + b12 = 0

neural network N as abstraction f̃ of nonlinear vector field f

N (x) : Rn → Rn approximates f (x)

H neurons → 2H total modes (at most! but not, really)

10
A. Abate, A. Edwards, and M. Giacobbe, “Neural Abstractions,” NeurIPS, Advances in Neural Information Processing

Systems 35, 26432-26447, 2022.
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Model hybridisations as neural abstractions - Synthesis

Learner Verifier

N

c

f (x),X

N
valid

synthesis of neural abstractions via CEGIS
1 learn parameters of NN N w/ MSE loss L = ∥f (S)−N (S)∥, S finite
2 SMT solver provides formal upper bound ϵ on approximation error:

∃c ∈ X s.t. ∥f (c)−N (c)∥ > ϵ
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Model hybridisations as neural abstractions - synthesis

Learner
▶ multi-output regression when outputs of different scales is difficult
▶ instead of learning N (x) : Rn → Rn, learn n nets Ni (x) : Rn → R

...
x

...

...

...

...

N1(x)

Nn(x)

ReLU

Verifier: dReal
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Model hybridisations as neural abstractions - verificationSafety Verification Using Neural Abstractions
Concrete nonlinear system

x
...

ẋ

ReLU

Neural abstraction

Abstract hybrid automatonFlowpipe propagation

Abstraction
synthesis

Model
translation

Safety
verification

Edwards & Abate (OxCAV) Neural Abstractions AIMS - Systems Verification - HT 23
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Model hybridisations as neural abstractions - examples





ẋ = −y − 1.5x2

−0.5x3 − 0.5

ẏ = 3x − y

{
ẋ = exp(−x) + y − 1

ẏ = − sin(x)2
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concrete model

1.0 0.5 0.0 0.5 1.0
1.0
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0.0
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1.0
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neural abstraction
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Model hybridisations as neural abstractions - benchmarks

10 3

10 2

10 1

100

101

102

Er
ro

r

Benchmark = NP3 Benchmark = Jet Engine

10 3
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r

Benchmark = Exponential Benchmark = Buckling

10 3

10 2

10 1

100

101
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r

Benchmark = VdP Benchmark = Coupled VdP

100 102 104

Partitions

10 3

10 2

10 1

100

101

102

Er
ro

r

Benchmark = Steam

100 102 104

Partitions

Benchmark = 4DLV

RA
ASM
MARM
NA

error denotes accuracy

- NA = neural abstractions

mesh-based hybridisations:

- RA = rectangular abst. on
rectangular mesh

- ASM = affine abst. on
simplicial mesh

- MARM = multi-affine abst. on
rectangular mesh
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Model hybridisations as neural abstractions - benchmarks

Width 2 3 4 5 6 7 8 9 10
Benchmark

4DLV 0.60 0.667 0.567 0.633 0.367 0.0 0.0 0.0 0.0
Buckling 1.0 0.50 0.167 0.333 0.0 0.0 0.0 0.0 0.0
Coupled-VdP 1.0 1.0 1.0 0.933 0.067 0.40 0.20 0.0 0.0
Exponential 1.0 1.0 1.0 1.0 0.933 0.733 0.433 0.0 0.0
Jet Engine 0.533 0.267 0.333 0.067 0.0 0.0 0.0 0.0 0.0
Log 0.867 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
NP3 0.967 1.0 0.967 0.433 0.033 0.0 0.0 0.0 0.0
Steam 0.967 1.0 1.0 1.0 1.0 0.967 0.80 0.967 0.633
VdP 0.967 0.967 1.0 1.0 1.0 0.667 0.567 0.0 0.0

NA vs ASM: proportion of experiments outperforming ASM
hybridisation for equivalent numbers of partitions.

“Width” refers to width of NN
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Model hybridisations as neural abstractions - verification
initial states in X0, bad states XU

ensure no trajectory of f starting in X0 enters XB over time horizon T

safety verification via over-approximations of reachable set from X0

Neural Abstractions 25

Jet Engine [1]

(
ẋ = �y � 1.5 ⇤ x2 � 0.5 ⇤ x3 � 0.5,

ẏ = 3 ⇤ x� y,
(26)

Non-Lipschitz Vector Field (Log)

(
ẋ =
p

x + y

ẏ = ln (x + 2)
(27)

B Appendix: Additional Reachable Set Computation
through Neural Abstractions

Fig. 6: Over-approximation of reachable states computed via Neural Abstractions
for the challenging Log benchmark, T = 1.0s, ⌧ = 0.1s.
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Model hybridisations as neural abstractions - verification
initial states in X0, bad states XU

ensure no trajectory of f starting in X0 enters XB over time horizon T
safety verification via over-approximations of reachable set from X0

16 No Author Given
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(a) Flow* reachable states, T = 1.5s,
⌧ = 0.1s and 2nd order Taylor model
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(b) Flow* reachable states, T = 1.5s,
⌧ = 0.1s and 3rd order Taylor model

(c) Neural Abstraction reachable states, T = 1.5s, ⌧ = 0.1s

Fig. 5: Over-approximation of reachable states for the Jet Engine Benchmark,
computed with neural abstractions and Flow*, for given time-step ⌧ and time
horizon T .
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Model hybridisations as neural abstractions - verification
initial states in X0, bad states XU

ensure no trajectory of f starting in X0 enters XB over time horizon T

safety verification via over-approximations of reachable set from X0

Model T Flow* Neural Abstractions
TM δ Safety Ver. t W M Safety Ver. t

Jet Engine 1.5 10 0.1 Yes 1.3 [10, 16] 8 Yes 215
Steam Governor 2.0 10 0.1 Yes 62 [12] 29 Yes 219
Exponential 1.0 30 0.05 Blw 1034 [14, 14] 12 Yes 308
Water Tank 2.0 - - No - [12] 6 Yes 49
Non-Lipschitz 1 1.4 - - No - [10] 12 Yes 19
Non-Lipschitz 2 1.5 - - No - [12, 10] 32 Yes 59

ground truth is Safe - note that M << 2H - SoA is Flow∗
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Neural abstractions: alternative templatesNeural Abstractions: Alternative Templates

Piecewise
constant

Piecewise a�ne Nonlinear

Activation
function

�1

1

H

�1

1

ReLU

�1

1

Sigmoid

Equivalent
abstract model

LHA I with
disturbance

LHA II with
disturbance

Nonlinear ODE
with disturbance

Safety verification
technology

Symbolic
model checking

STC algorithm Taylor models

Safety veri-
fication tool

PHAVer SpaceEx Flow*

Edwards & Abate (OxCAV) Neural Abstractions AIMS - Systems Verification - HT 23
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Neural abstractions: alternative templates
Tradeo↵ between Accuracy and E�ciency

(a) Neural PWC
abstraction

(b) Neural PWA
abstraction

(c) Sigmoidal
abstraction.

(a) Flowpipes for
neural PWC
model. 11.6s

(b) Flowpipe for
neural PWA
model. 76.5s

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

(c) Flowpipe for
sigmoidal model.
1084.3s

Edwards & Abate (OxCAV) Neural Abstractions AIMS - Systems Verification - HT 23
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2 SAT and SMT - Satisfiability and Synthesis
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Safe autonomous driving - setup11

given: non-linear (3-dim) car dynamics, (2-dim) feedback controller
(v , ω) for reference tracking





d
dt x(t) = v cos θ(t)
d
dt y(t) = v sin θ(t)
d
dt θ(t) = ω

goal: safely execute closed-loop dynamics, avoiding obstacles in
environment

approach: safe Reach-Set computation with NN-based barrier
certificates

11
A. Abate, S. Bogomolov, A. Edwards, K. Potomkin, S. Soudjani, P. Zuliani, “Safe Reach Set Computation via Neural

Barrier Certificates,” Under Review, 2023.
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Safe autonomous driving - approach
1 from set of initial states X0, given pair (v , ω), generate

over-approximation of reach set via model trajectories over T

2 consider dual of over-approximation as unsafe set XU

3 generate sound barrier certificate with FOSSIL

12

We have computed the barrier certificate displayed in Figure 4a. Further,
we have trained the meta-neural network for this model. For this purpose, we
have generated valid barrier certificates for di↵erent initial sets with a fixed
size within a specified domain. The input to the meta-neural network is the
initial set, represented as coe�cients of its support vectors. We have then tested
the meta-neural network over di↵erent initial sets of di↵erent size, but within
the same specified domain. The correctness of the output of the meta-neural
neural network, i.e., the validity of the barrier certificates, was 99.3% over 1000
randomly sampled initial sets of random size (but not larger than the training
sets).

(a) Linear system with with real
eigenvalues.

(b) Spiralling stable dynamics.

(c) Jet engine system.

Fig. 4: Safe reach sets for the linear system with with real eigenvalues, spiralling
stable dynamics and a jet engine system. The red traces are simulation trajec-
tories. The inner and outer octagons are, respectively, the convex hull of the
generated trajectories, and its over-approximation. The yellow rectangle is a
bounding box. The black ellipsoid is the zero level-set of the validated barrier
certificate.

Stable linear system with complex eigenvalues (spiralling dynamics).
The model with spiralling dynamics is defined as:

(
d
dtx(t) = y, x(0) = x0

d
dty(t) = �0.2 · x� 0.2 · y, y(0) = y0.
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Safe autonomous driving - approach

generalise over sets of initial states X0, time horizons T , and input
pairs (v , ω)

done via MetaNN (NN2), validated with SMT

highly accurate (∼ 99%) outcomes

8

Simulation
engine

MetaNN
(NN2)

Verifier
(SMT solver)

x

C(x)

Xu

Xb
FOSSIL
(NN1)

Training
data

C(x)
candidateX0

Simulation
engine

Xb

Generate training
samples X0

x

Fig. 3: Structure of the proposed framework. It can be split into two phases:
(i) an o↵-line phase where the training data is prepared and the meta-network
is trained (top); and (ii) an online phase (bottom) where sound reach sets are
generated via neural barrier certificates.

We present schematically our algorithm in Figure 3. Our approach has two
main phases. During the first phase (o↵-line) we generate a training set, which is
used later to train a meta-network (MetaNN in Figure 3). We pass the initial set
X0 into the simulation engine which provides data to generate a barrier certificate
using FOSSIL. Then, we train the meta-network MetaNN once enough data is
collected, in order to generalise over some domain.

Next, we switch to phase two (online phase) of our approach. This phase is
outlined in Algorithm 1. We pass X0 into the meta-network MetaNN trained in
the o↵-line phase, and along with a simulation engine we obtain coe�cients for a
barrier certificate candidate and for the working region Xb, which we later check
via an SMT solver.

If the barrier certificate is verified, then we can proceed to the next time
step of the on-line phase. Otherwise, we can decide either to stop or to use
the counter-example generated by the SMT solver to refine the training of the
MetaNN - see Section 4.2.

Below we discuss each part of the framework in more details.

3.2 Simulation Engine

First, we need to generate a working region for the initial set X0. For this pur-
pose we run simulations from the vertices of the initial set and some random
points inside of it. Then we take the convex hull of the generated trajectories.
This set allows us to compute working region Xb, which is basically a box over-
approximation of the generated convex hull. Note that for stable systems we
can use unbounded sets as working regions. Then, we also generate an octag-
onal over-approximation of the convex hull. The resulting set can encompass
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Safe autonomous driving - case study

3D state space, 2 inputs (v , ω) with tracking controller; dynamics:





d
dt x(t) = v cos θ(t)
d
dt y(t) = v sin θ(t)
d
dt θ(t) = ω

14

provide sound safety guarantees on the executed control inputs. We argue that
the execution can be practically unfolded in real time.

The baseline controller we have designed for reaching the target region is the
following:

8
>><
>>:

v(t) = ↵1 (1� exp(�↵2k(x(t)� xr, y(t)� yr)k2))
!(t) = ↵3(✓r(t)� ✓(t))

✓r(t) := arctan
⇣

y(t)�yr

x(t)�xr

⌘
,

(7)

where (xr, yr) 2 Xr is a reference point within the target region and ✓r(t) is
the relative angle between current and target location. The angular speed !(t)
is designed to steer the car from the current orientation towards the reference
angle. The speed is also proportional to the distance from the reference point
passed trough an exponentially decaying function, thus slowing down the vehicle
when approaching the reference point. Note that this simple controller can be
replaced with any other path planning algorithm that can be synthesised over
the dynamics of the car in (6).

Simulation
engine

MetaNNVerifier
(SMT solver)

Controller [v, !, ✓][X0, isSafe]

X0

xC(x)

Xu

Xb X0, Xu, x

Safe
contr.

X0

isSafe

false

true

[v, ✓],
false

Fig. 5: Structure of our safe-planning algorithm. It is similar to the framework
proposed in Figure 3 with the addition of two controllers: the base one (yellow)
and the safe one (purple) to avoid unsafe regions in case potential hazard. This
structure only visualises the real-time setting, i.e., when training data is gener-
ated and the meta-network MetaNN has been trained.

This controller does not consider obstacles and does not come with any safety
guarantees. These desirable extensions can be addressed by our safe reach set
approach. First, let us note that the dynamics in (6) admit two structural prop-
erties that are useful in the computation of barrier certificates. While these
properties are not specifically required by our approach, they can be utilised to
reduce the computational burden of our technique.
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Safe autonomous driving - case study

3D state space, 2 inputs (v , ω) with tracking controller; dynamics:





d
dt x(t) = v cos θ(t)
d
dt y(t) = v sin θ(t)
d
dt θ(t) = ω

16

scheme. Finally, the working region Xb is computed as in Section 2.4. Due to
the trigonometric terms present in the system dynamics (6), dReal is again a
suitable choice of SMT solver for checking the validity of the candidate barrier
certificates produced by the MetaNN.

(a) Reachable sets for a total time horizon T = 20
along with unsafe occurrences at step 2 and step 7;
the car starts in the top-right corner.

(b) Original unsafe control (top)
along with the safe control (bot-
tom) for step 2.

(c) Original unsafe control (top)
along with the safe control (bot-
tom) for step 7.

Fig. 6: Plot of the trajectory of the autonomous driving case study for T = 20.
Each block corresponds to Tr = 2. Red traces correspond to trajectories which
lead to unsafe region. Green trajectories are safe. Red sets represent unsafe
regions. Black curves are zero-level set of barrier certificates.

In Figures 6b and 6c we report two examples of control action that would
result in unsafe behaviour, and their resolution. Specifically, for cases when the
dynamics leads to the unsafe region we use the same controller to avoid obsta-
cles. For this purpose, we exploit the unsafe state as the target region and take
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dynamics leads to the unsafe region we use the same controller to avoid obsta-
cles. For this purpose, we exploit the unsafe state as the target region and take
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Ongoing work12

synthesis of provably-correct controllers (not discussed)

Learner Verifier

V

c

f (x),D

V
valid

automated, sound, relatively scalable

→ applications in provably-correct synthesis/safe learning, for autonomy

as we speak, we’re looking at:
▶ controlled, stochastic models
▶ synthesis “modulo oracles”

12
A. Abate, I. Bessa, D. Cattaruzza, L. Cordeiro, C. David, P. Kesseli, D. Kroening and E. Polgreen, “Automated Formal

Synthesis of Provably Safe Digital Controllers for Continuous Plants,” Acta Informatica, 57(3), 2020.
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Thank you for your attention

www.oxcav.org
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