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Motivations
e stability, reachability (vs. safety/invariance) of autonomous models
x = f(x)
@ termination, assertion violation of SW programs
while g(x), xt := f(x)

@ non-linear (e.g., polynomial) dynamics/updates

stochastic, controlled models
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Motivations
e stability, reachability (vs. safety/invariance) of autonomous models
x = f(x)
@ termination, assertion violation of SW programs
while g(x), xt := f(x)
@ non-linear (e.g., polynomial) dynamics/updates

stochastic, controlled models

@ use of sufficient approaches: synthesis of certificates, e.g.
Lyapunov functs V/(x), barrier certificates B(x), ranking functs n(x)
e model abstractions f(x)

@ sound and automated synthesis (vs. numerical, manual)
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Goals

@ new approach to synthesise certificates for
stability /safety/termination/. . .
@ new approach is
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Goals

@ new approach to synthesise certificates for
stability /safety/termination/. . .
@ new approach is

» automated: minimal user input
» sound: SMT-verified
> in general, lacks completeness

o FOSSIL, a software tool

@ variations, extensions, applications ...
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© SAT and SMT - Satisfiability and Synthesis
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Decision problems: SAT and SMT

@ SAT is a decision problem (can be formulated as a yes/no question)
e finding satisfying assignment of Boolean functions

@ e.g., assume x; Boolean,

Ixq, x0,x3 1 (x1 V x2) A (—x1 V xo V x3) A —xg
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Decision problems: SAT and SMT

@ SAT is a decision problem (can be formulated as a yes/no question)
o finding satisfying assignment of Boolean functions

@ e.g., assume x; Boolean,

Ixg, x0,x3 1 (x1 V —x2) A (—x1 V x2 V x3) A —xq

@ SMT: decision problem for logical formulae within one (or
combination of) theories

@ e.g., assume x; integers,
dx1,x :x120=3x1+2x%+1>0

@ instance: theory of arithmetics over real closed fields (e.g., with
polynomial functions)
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Decision problems: SAT and SMT

@ SAT is hard! Let alone SMT!
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Decision problems: SAT and SMT

@ SAT is hard! Let alone SMT!

@ yes but ...ever more powerful and numerous SW tools, of industrial
relevance

1

Time

/
2004 /fl

2009

Number of problems solved

[credit: E. Polgreen]

@ breakthroughs: algorithmic improvements over DPLL/CDCL +
applications

Abate et al (CS, Oxford, www.oxcav.org) Formal Synthesis with Neural Templates April 2023 7/58



From decision to synthesis problems

@ consider problem:
x; € 7 integers, F : Z X 7 — 7;

HF,VX]_,XQ,

F(X1,X2) > x1 N\ F(Xl,Xz) > X2 N\ (F(Xl,Xz) =x1V F(Xl,Xz) = X2)
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From decision to synthesis problems

@ consider problem:
x; € 7 integers, F : Z X 7 — 7;

HF,VX]_,XQ,

F(X1,X2) > x1 N\ F(Xl,Xz) > X2 N\ (F(Xl,Xg) =x1V F(Xl,Xz) = X2)

(F = max{x1,x2})

@ synthesis: constructive, optimisation-based, inductive
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© Lyapunov Functions
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Conditions for Lyapunov function V/(x)
@ assume x. € R” is an equilibrium, f(x.) =0

@ ensure asymptotic stability of x, in D C R”

@ lower bound:

V(xe) =0 (1)
@ positive definiteness:
V(x) >0, Vx € D\ {xe} (2)
@ negative Lie derivative:
V(x) = VV(x) - f(x) <0, ¥x € D\ {xe} (3)

@ no general, effective method: potential search within function space
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Conditions for Lyapunov function V/(x)

@ lower bound:

V(xe) =0 (1)
@ positive definiteness:
V(x) >0, Vx € D\ {x} (2)
© negative Lie derivative:
V(x) = VV(x)-f(x) <0, ¥x € D\ {x} (3)

@ no general, effective method: potential search within function space
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Lyapunov synthesis problem

@ solve following synthesis problem:

JV:D - R V¥xeD s.t. conditions (1) A (2) A (3) are SAT
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Lyapunov synthesis problem

@ solve following synthesis problem:

JV:D - R V¥xeD s.t. conditions (1) A (2) A (3) are SAT

@ inductive synthesis — “guess and check”

[y

. sample (finite) set S C D

N

“guess” V/(s) that satisfies (1) A (2) A (3) on points s € S

3. “check” either V/(x) valid over dense D or counterexample ¢ :
query SMT solver whether 3c € D : =(1) V=(2) V—=(3)

4. S+ SUc, loop back to 2
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Counterexample-guided inductive synthesis (CEGIS)

1. Learner: generates candidates V over finite set “guess”

2. Verifier: certifies validity on D, or provides c-example(s) ¢ “check”

f(x),D
|

%4
T~

valid
Learner Verifier 74

\_/

C

@ sound but not complete: search space for V infinite (as domain D)
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Synthesis of Lyapunov functions from templates?

@ work with fixed, given polynomial templates
Cc
V(x) = ZX/T P x
I=1
c - degree that can be tuned

@ ‘“guess’ - candidates generated by SMT solver call

enforcing Lyapunov conditions in (1), (2), (3) on S

1D. Ahmed, A. Peruffo and A. Abate, “Automated and Sound Synthesis of Lyapunov Functions with SMT Solvers,”

TACAS20, LNCS 12078, pp. 97-114, 2020.
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Synthesis of Lyapunov functions from templates?

@ work with fixed, given polynomial templates
Cc
V(x) = ZX,T P x
I=1
c - degree that can be tuned
@ ‘“guess’ - candidates generated by SMT solver call

enforcing Lyapunov conditions in (1), (2), (3) on S

@ ‘“check” via SMT solver on non-linear formulae over reals

@ 73, dReal: outcomes provably correct, sound and (for Z3) complete

1D. Ahmed, A. Peruffo and A. Abate, “Automated and Sound Synthesis of Lyapunov Functions with SMT Solvers,”
TACAS20, LNCS 12078, pp. 97-114, 2020.
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Synthesis of Lyapunov functions from templates?
@ work with fixed, given polynomial templates
Cc
V(x) = ZX,T P x
I=1
c - degree that can be tuned
@ ‘“guess’ - candidates generated by SMT solver call
enforcing Lyapunov conditions in (1), (2), (3) on S

e alternatively, solution of optimisation problem (via Gurobi)

@ ‘“check” via SMT solver on non-linear formulae over reals

@ 73, dReal: outcomes provably correct, sound and (for Z3) complete

1D. Ahmed, A. Peruffo and A. Abate, “Automated and Sound Synthesis of Lyapunov Functions with SMT Solvers,”
TACAS20, LNCS 12078, pp. 97-114, 2020.
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Experimental results

n Gurobi-CEGIS Z3-CEGIS
Iterations Time [sec] 00T Iterations Time [sec] 00T

3 33 3] 048033, 0.77] | - 3.03[3,4] | 049[04, 0.70] =
4 310[3,4] | 053[0.36,1.20] | - 593 [4,7] | 0.68[0.541.07] | -
5 415[4,5] | 1.33[1.08 1.97] | - 738[5,12) | 1.67[110,3.03] | -
6 6.99 [4,10] | 3.88 [2.41,4.97] | - 9.10 [6, 10] | 7.48 [2.40, 54.44] | -
7 8.56 [4, 12] 12.64 [2.9, 62.3] - 12.88 [5, 17] | 17.63 [5.41, 20.3] 1
8 9.14 [3, 13] | 21.50 [3.9, 114.16] 1 16.2 [3, 25] | 23.91 [4.05, 35.08] 1
9 | 15.72[3,32] | 29.98 [3.87,78.5] | 2 22.47 [4, 35] | 34.41 [5.67, 48.96] | 5
10 | 18.45[3,41] | 40.63 [6.17, 46.65] | 5 27.25 [5, 47] | 44.63 [6.32, 101.2] | 7

@ Gurobi-CEGIS vs. Z3-CEGIS
@ N =100 randomly generated n-dimensional linear models
@ OOT = number of runs (out of N) not finishing within 180 [sec]

@ time: average [min, max] performance [sec]
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Lyapunov functions as neural networks?
@ learner trains shallow neural network

V(X): W2-0'1(W1X+b1) ‘ @

@ generality and flexibility '
(univ. function approximator) ‘ @

e alternative activation fcns (o) W W

@ loss function enforces Lyapunov
conditions in (1), (2), (3):

L(S) = Z max{0, —V/(s)} + Z max{0, V(s)}

seS seS

@ loss function L is “pretty good” proxy of synthesis formula

2
A. Abate, D. Ahmed, M. Giacobbe and A. Peruffo “Automated Formal Synthesis of Lyapunov Neural Networks,” IEEE
Control Systems Letters, 5 (3), 773-778, 2020.
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From learner to verifier, and back

@ communication btw Learner <+ Verifier is crucial

— translate Neural Network into formula
V(x) = Wy - o1 (Wix + by)
V(x) = VV(x) - f(x) = Wa - o} (Wix + by) - Wy - f(x)
@ SMT engine accepts negation of synthesis specification, namely
Ixst.x €D\ {xe} AV(x) <0V V(x)>0

@ outcomes:

@ sat: counter-example ¢ and loop back to Learner, now with SU ¢
@ unsat: V is valid (proper Lyapunov fcn)
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From learner to verifier, and back

@ communication btw Learner <+ Verifier is crucial

— translate Neural Network into formula
V(x) = Wy - o1 (Wix + by)

V(x) = VV(x) - f(x) = Wa - oy (Wix + b1) - Wi - (x)

@ SMT engine accepts negation of synthesis specification, namely
Ix s.t. x €D\ {xe} AV(x) <0V V(x) >0

@ outcomes:
@ sat: counter-example ¢ and loop back to Learner, now with SU ¢
@ unsat: V is valid (proper Lyapunov fcn)
<+ extract more details around c-ex ¢, provide more info to Learner

@ generate random samples around ¢
@ unfold model trajectories from ¢
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Experimental results

@ non-linear models that do not admit global polynomial V/(x)

@ vs. related work, provided larger domains in comparable runtimes

LNN | LNN || NLC? NLC CBS* | CBS || SOS® | SOS
Time H Time ‘ Domain ‘ Time ‘ r H Time r
12.01 500 6.28 1 0.22 1 6.67 800
0.29 100 5.45 1 0.30 1 7.76 25
0.32 | 1000 || 54.12 1 2.22 1 11.80 | OOT
33.27 | 1000 || 37.80 1 0.42 1 9.65 | OOT

Table: Comparison between proposed approach (LNN), NLC and CBS
approaches, and SOSTOOLS: total Time (guess and check) [sec], Domain D
(radius r). Timeouts = OOT.

3 Chang, Y.C., Roohi, N. and Gao, S., “Neural Lyapunov Control”, NeurlPS, pp. 3245-3254, 2019.

D. Ahmed, A. Peruffo and A. Abate, “Automated and Sound Synthesis of Lyapunov Functions with SMT Solvers,”
TACAS20, LNCS 12078, pp. 97-114, 2020.

5 A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, and P. A. Parrilo. SOSTOOLS: Sum of squares
optimization toolbox for MATLAB, 2013.
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Experimental results

@ non-linear models that do not admit global polynomial V/(x)
@ vs. related work, provided larger domains in comparable runtimes
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Example: Synthesis of Lyapunov function in 3 CEGIS loops
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@ Barrier Certificates
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Conditions for barrier certificate B(x)

e from notion of stability (equilibria) to safety (set invariance)
e consider sets Xp (initial) and X, (unsafe)

@ ensure there exists no trajectory starting in Xy entering X, over D
@ negativity in initial set Xp:

B(x) <0 Vx € X (4)
@ positivity in unsafe set Xy:

B(x) > 0Vx e Xy (5)
© set invariance property via Lie derivative:

B(x) < 0 V¥x s.t.B(x) =0 (6)
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Conditions for barrier certificate B(x)

@ negativity in initial set Xp:

B(x) <0Vx e Xy
@ positivity in unsafe set Xy:

B(x) > 0 Vx € Xy
© set invariance property via Lie derivative:

B(x) <0Vxst.B(x)=0
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Barrier certificates as neural nets?

@ barrier certificates often require a more arbitrary (non-linear)
structure than Lyapunov functions (cf. shapes of Xp, Xy)

@ neural networks provide powerful, rich template for diverse potential
candidates:
» canonical activations such as o(x) = x"
» more neuro-typical activation functions such as o(x) = tanh(x) and
o(x) = In(1 + exp(x))
> use of leaky and saturated RelLU's

3A. Abate, D. Ahmed and A. Peruffo, “Automated Formal Synthesis of Neural Barrier Certificates for Dynamical Models,”
TACAS21, LNCS 12651, pp. 370-388, 2021.
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Experimental results

Benchmark CEGIS (this work) BC* SOS°®
Learn  Verify Samples lters Learn Verify ~ Samples Synth  Verify
Darboux 316 0.01 0.5 k 2 54.9 20.8 65 k X -
Exponential 159  0.07 15k 2 234.0 11.3 65 k X -
Obstacle 555 183 20k 9 3165.3 1003.3 2097 k X -
Polynomial 64.5 4.20 2.3k 2 1731.0 6353 65 k 8.10 X
Hybrid mod 0.58 2.01 0.5 k 1 - - - 12.30 0.11
4-d ODE 29.31 0.07 1k 1 - - - 1290 OOT
6-d ODE 89.52 1.61 1k 3 - - - 16.60 OOT
8-d ODE 104.5 82.51 1k 3 - - - 26.10 OOT

@ time for Learning and Verification steps in [sec]
@ ‘Samples’ = size of input data for Learner (in thousands)
@ 'lters’ = number of iterations of CEGIS loop

@ X = synthesis or verification failure, OOT = verification timeout

4 H. Zhao, X. Zeng, T. Chen, and Z. Liu. Synthesizing Barrier Certificates Using Neural Networks. In Proceedings of the
23rd International Conference on Hybrid Systems: Computation and Control, HSCC, 2020.

5 A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, and P. A. Parrilo. SOSTOOLS: Sum of squares
optimization toolbox for MATLAB, 2013.
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Synthesised barrier certificates - examples

Barrier Certificate

--- Unsafe set
} T Initial Set

Barrier Border

[10] - Linear
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Synthesised barrier certificates - examples

Barrier Certificate Barrier Border

=
== Initialset |

=~ Unsafe set

=~ Initial Set
—~ Unsafe set

.50 =025 000 025 050 075 100
x

[20] - Softplus
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Synthesised barrier certificates - examples

Barrier Certificate

4TI Initial Set
=1 Unsafe et
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© FossIL
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Software Tool - FOSSIL®

@ Formal Synthesis of Lyapunov Functions and Barrier Certificates using
Neural Networks

» CEGIS with NN templates
» two SMT engines: Z3, dReal
improved Learner/Verifier communication

» supports non-polynomial dynamics with multiple equilibria
handles continuous- and discrete-time models
» scalable and robust

» easy-to-use Jupyter-based user interface

https://github.com/oxford-oxcav/fossil

6A. Abate, D. Ahmed, A. Edwards, M. Giacobbe and A. Peruffo, “FOSSIL: A Software Tool for the Formal Synthesis of
Lyapunov Functions and Barrier Certificates using Neural Networks,” HSCC, pp. 1-11,:2021.
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FOSSIL - architecture

Candidat valid
Translator andldate @

:' Out of CEGIS ‘:
. Loops L S+ SUcext C lidat :
| % earner onsolidator |
3 N(6) cex 3

o Translator
> translates numerical neural network into symbolic candidate
» trade-off precision of symb variables vs tractability of verification

o Consolidator
» samples around counterexample — more data to learner
» computes trajectory of maximum constraint violation
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FOSSIL - robustness

@ random initialisation influences results

e variation of NN width (h) and domain radius
@ average times and number of failures for Lyapunov synthesis with

X = —X+ Xy
y=-y

120 +

=

=]

IS)
L

@
o
!

Computational Time [seconds]
8 g
L |

20 4

r 120

r 100

r80

Failures

r 60

r20

10
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FOSSIL - robustness

@ model dynamics
X =y +2xy,
y=-x++ 2x2 — y2

@ sets
Xo={0<x<1,1<y<2}, X,={x+y*><0}

Table: Minimum and average running times and number of failures (in
parenthesis), out of 25 runs, for barrier synthesis task.

Hidden Neurons ‘ 2 10 50 100

Min Time 18.11 21.72 61.06 173.01
Avg Time (Fail) | 35.46 (0) 33.27 (0) 73.77 (0) 217.68 (0)
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FOSSIL - tests on benchmarks from literature

Benchmark Dim Iters Time N-Net Verifier
nonpoly, 2 1 0.22 2-[¢2] dReal
nonpoly; 2 1 1.54  20:[¢1, ¢2 Z3
nonpoly, 3 1 1.63  10:[¢1, ¢2 Z3
nonpoly; 3 1 1206 3.[¢2] 73
poly, 3 1 08l 5[¢]  dReal
poly, 2 3 1013 10-[¢y] 73
poly; 2 3 1725 5-[¢2 dReal
poly, 2 2 5.88 5-[¢2 dReal
barr; 2 1 26.85 10-[¢1, dReal
P12, 1]
barr; 2 1 0.92  10tanh]  dReal
barrs 2 2 10.03 20:tanh]  dReal
hy-lyap 2 1 2.24 10-[¢2 73
hy-barr 2 1 8.46 3 (1,2 Z3
hi-ordy 4 3 98.94 20-[¢1 dReal
hi-ordg 6 1 29.39 10-[¢1 dReal
hi-ordg 8 1 41.72 10-[¢1 dReal

Abate et al (CS, Oxford, www.oxcav.org)
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FOSSIL - ongoing extensions
@ class of properties:
VE(to) € X, 3T € RY,Vt € [ty, T, V7 > T :
§(t) & Xu NE(T) € X6 NE(T) € XF
@ encompasses stab/reach/safety/invariance/reach-avoid/RSWA/. ..

Figure: Black trajectory satisfies, red ones violate property.
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FOSSIL - ongoing extensions

e dynamical models with inputs (a.k.a., external non-determinism)

— synthesis of “control certificates” (e.g., control LFs, BCs, ...- well
known in literature)

@ approach: control policies are NN-templated,

synthesis follows from above (albeit being more complex)

@ (SW to be released hopefully soon)
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Outline
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Extension: discrete-time, probabilistic models

e discrete-time models (e.g. SW programs), x* = f(x)

@ same Lyapunov conditions, except concerning “next step”:

V(f(x)) < V(x), VxeD\{xe}

@ stochastic models: same story, except for “next step”-condition is in
expectation:

E[V(f(x)) | x] < V(x), VxeD\ {xe}
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Program termination’

@ discrete-time programs

(10,10) ——— (9, 10)

while (red > @ or blue > 0) 0,9 ——— 69
if ((red + blue) % 2 == 0) /
red = red - 1 (8,8 ——— (7,9)
else
blue = blue - 1

. \(0,1)
/

(0,0)
halt

7D. Roy, M. Giacobbe, and A. Abate, “Learning Probabilistic Termination Proofs;”s CAV21; LNCS 12760, pp. 3-26, 2021:
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Program termination’

@ discrete-time programs

while (red > 0 or blue > 0) p ~ Bernoulli(0.01)
p ~ Bernoulli(0.01)
if (p == 1)
red = red - 1 0'99/\01
else
blue = blue - 1 p=20 p=1

7D. Roy, M. Giacobbe, and A. Abate, “Learning Probabilistic Termination Proofs;”s CAV21; LNCS 12760, pp. 3-26, 2021:
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Program termination’
@ discrete-time programs

while (red > @ or blue > 0)
p ~ Bernoulli(0.01)

if (p == 1)
red = red - 1
else

blue = blue - 1

Xo=02,2)

2,25 (1,273 (1,15 (1,005 (0,0) (halt)

222 e n= o= e -n"3 ..
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Program termination’
@ discrete-time programs

while (red > 0 or blue > 0)
p ~ Bernoulli(0.01)
if (p == 1)
red = red - 1
else
blue = blue - 1

Xo=02,2)

2,25 (1,273 (1,15 (1,005 (0,0) (halt)
2.5 = 205 0 -n"5S .

@ what is the probability that allowable traces terminate?
@ PAST - positive, almost-sure termination:

[E [execution steps| < co

@ PAST implies a.s.-termination (w.p. 1)

7D. Roy, M. Giacobbe, and A. Abate, “Learning Probabilistic Termination Proofs;”s CAV21; LNCS 12760, pp. 3-26, 2021:
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Ranking functions for program termination

@ probabilistic programs in discrete time

o certificates for PAST: ranking super-martingales (RSMs) 7

Abate et al (CS, Oxford, www.oxcav.org) Formal Synthesis with Neural Templates April 2023 37/58



Ranking functions for program termination

probabilistic programs in discrete time

certificates for PAST: ranking super-martingales (RSMs) 7

@ seek n7: x — R, where x are program configs, such that

Q n(x) = K
Q En(Xes1)|Xe =x] <n(x) —€,  €>0,

@ conditions above entail

@ bound (K) from below
© decrease in expectation at each iteration by at least an ¢

Abate et al (CS, Oxford, www.oxcav.org) Formal Synthesis with Neural Templates April 2023 37/58



CEGIS-based synthesis of RSMs

@ learner trains ReLU-activated NN
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CEGIS-based synthesis of RSMs

@ learner trains ReLU-activated NN
@ lower bound on NN (K) satisfied by construction

@ NN ought to “decrease in expectation” from program state x
— loss at state x is  max {E [1(Xi11)|Xe = x] — n(x) + ¢€,0}
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CEGIS-based synthesis of RSMs

() \L e o

learner trains ReLU-activated NN

lower bound on NN (K) satisfied by construction
NN ought to “decrease in expectation” from program state x
loss at state x is  max{E [(X:11)|X: = x] — n(x) +¢€,0}

approximate expectation by Monte Carlo estimate from sampled
executions x” from program state x:

loss at state x is  max { TP7] Svep (X)) = n(x) +e, 0}
smoothen loss (easier derivative)

loss at state x is  softplus { 7 2oxep N(X") = n(x) + €, 0}

Abate et al (CS, Oxford, www.oxcav.org) | Formal Synthesis with Neural Templates April 2023 38/58



CEGIS-based synthesis of RSMs - example

while (red > @ or blue > 0)
p ~ Bernoulli(0.01)

if (p ==1)
red = red - 1
else

blue = blue - 1

X =(2.2)
2,275 1,27 0,173 (1,005 0,0 (halt)

22> 2= o= e-ns

@ synthesised RSM: n(red,blue) = max{red, 0} + max {blue, 0}

Abate et al (CS, Oxford, www.oxcav.org) Formal Synthesis with Neural Templates April 2023 39/58



CEGIS-based synthesis of RSMs - benchmarks®

Program Aupeg|Farkas’| AB- || Succp oy oin [Verif. | iter [NRSM
lemma |[SYNTH|| rate
(9 | [2 | [a)
Hare & Tortoise (d) 0.04 ~0| 0.09/10/10| 0.61| 3.86| 0.70| 0 SOR
exmini/terninate (d) —  0.02 oot|/10/10| 1.75| 29.35| 7.67 2 SOR
aaron2 (d) 0.03|  0.02| 0.02//10/10] 0.04| 2.27| 0.01| 0 | SOR
catmouse (C) 0.03| 0.02 —|| 9/10] 0.39| 12.41| 3.68 1 SOS
counterexic (d) —| 0.02] 0.22| 8/10[ 1.00, 6.71] 0.02] 0 SOR
easy1 (d) 0.12| 0.01] 0.05/|/10/10] 1.12| 5.55| 1.27| 0 | SOR
easy2 (c) 0.04| 0.02 —|/10/10] 1.55| 6.79] 0.18| 0 SOS
ndecr (d) 0.04 0.02| 0.03[/10/10| 1.18] 5.63| 0.02] 0 SOR
randomid (c) 0.05| 0.02 —||10/10] 1.14| 4.86] 0.79] 0 SOS
rsd (d) error| 0.01) oot|/10/10| 1.14] 6.18] 2.04 0 | SOR
speedFailsi (d) 0.07] 0.01] 0.04[10/10| 0.45 4.09| 0.67, 0 SOR
speedP1di2 (d) —| 0.02] 0.40{ 9/10| 1.36] 7.85] 0.02] 0 | SOR
speedP1di3 (d) —| 0.02| 0.36| 8/10| 2.58/ 30.70| 2.12) 1 | SOR
speedPldid (d) — 0.02| 0.17|/10/10| 0.68] 5.07| 0.04) 0 SOR
speedSingleSingle (C) 0.03|  0.02 —||10/10] 0.39] 2.85| 0.51] 0 SOS
speedSingleSingle2 (d) —/| 0.02| 0.15[|/10/10| 0.83| 7.30| 0.04| 0 | SOR
weeto (d) 0.02| 0.10{/10/10| 1.45 5.64| 0.09/ 0 SOR
weet1 (d) —| 0.02| 0.10{/10/10| 0.85] 4.31| 0.09] 0 | SOR

o admittedly slower than existing tools

@ robust (cf. success rate)

@ generalises well (d = discrete, ¢ = continuous distributions;

SOR = sum of ReLU, SOS = sum of squares)

8D. Roy, M. Giacobbe, and A. Abate, “Learning Probabilistic Termination Proofs;”s CAV21; LNCS 12760, pp. 3-26, 2021:
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CEGIS-based synthesis of RSMs - benchmarks®

Program Anper|Farkas’| AB- |[Suce. | by in | Verif | #iter [NRSM
lemma |[SYNTH|| rate
(391 | [2] | [4]
probfact (d) — —| " n/al|10/10| 0.49] 6.12] 0.16] 0 | SOR
provtactz (d) [ —| n/a||10/10| 0.45| 5.89| 0.23] 0 | SOR
marbles (d) | n/al|10/10] 0.84] 10.83] 0.91 0 | SOR
sarbles3 (d) — —| n/al[10/10] 0.40| 70.14| 7.87] 2 | SOR
crvalk () —| | —[10/10] 0.53] 3.06] 1.56] 1 | SOS
crvaliz () 1 | —[10/10] 1.32] 3.11] 0.75 1 | SOS
expdistrv (C) n/al  —| —||10/10] 0.05] 1.53| 0.01, 0 | SOS
expdistruz (C) n/a  —| —|10/10] 4.92| 3.5/ 1.03| 1 | SOS
gaussrv (C) — — —/10/10/10.30| 3.45| 0.75| 0 SOS
gaussrv2 (C) — | —][9/10[15.46] 4.91] 5.33[ 0 | SOS
slicedcauchy (C) - —| —][10/10] 0.02] 3.31] 0.01] 0 | SOR
slicedcauchy2 (c) — — —|/10/10| 0.01] 2.16] 0.03] 0 | SOR

@ generalises well to non-linear programs
@ ongoing work:
@ more general program control-flow, e.g. nested loops
@ use of better sampling techniques, deeper networks, symbolic post
expectations
© problems beyond PAST: quantitative verification

8D. Roy, M. Giacobbe, and A. Abate, “Learning Probabilistic Termination Proofs;”s CAV21; LNCS 12760, pp. 3-26, 2021:
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Quantitative probabilistic verification®

@ probabilistic programs on real-valued variables

@ quantitative verification questions, i.e. probabilistic reachability
analysis
> termination and assertion violation
» safety and invariance verification

o certificates: neural indicating super-martingales (ISMs)
— upper bound on probabilistic reachability
(quite a few alternatives in literature)
@ post expectation: program-aware vs -agnostic

@ tight bounds, beyond linear certificates

gA. Abate, A. Edwards, M. Giacobbe, H. Punchihewa, and D. Roy, “Quantitative Verification With Neural Networks For
Probabilistic Programs and Stochastic Systems,” arXiv:2301.06136, 2023.
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Neural ISMs - benchmarks

Benchmark Farkas’ Quantitative Neural Certificates Network
Lemma Program-Agnostic Program-Aware Arch.
p p Success Ratio p Success Ratio
persist_2d - < 0.1026 0.9 <0.1175 0.9 (3. 1)
faulty marbles - < 0.0739 0.9 < 0.0649 0.8 3
faulty unreliable - < 0.0553 0.9 < 0.0536 1.0 3
faulty_regions - <0.0473 0.9 <0.0411 0.9 31
cliff crossing < 0.4546 < 0.0553 0.9 < 0.0591 0.8 4
repulse <0.0991 < 0.0288 1.0 < 0.0268 1.0 3
repulse_uniform <0.0991 < 0.0344 1.0 - - 2
repulse_2d <0.0991 < 0.0568 1.0 < 0.0541 1.0 3
faulty_varying <0.1819 < 0.0864 1.0 < 0.0865 1.0 2
faulty_concave <0.1819 < 0.1399 1.0 < 0.1356 0.9 (3. 1)
fixed_loop < 0.0091 < 0.0095 1.0 < 0.0094 1.0 1
faulty_loop <0.0181 < 0.019 1.0 < 0.0184 1.0 1
faulty uniform <0.0181 < 0.0233 1.0 < 0.0221 1.0 1
faulty rare <0.0019 < 0.0022 1.0 < 0.0022 1.0 1
faulty_easyl <0.0801 < 0.1007 1.0 < 0.0865 1.0 1
faulty_ndecr <0.0561 < 0.0723 1.0 < 0.0630 1.0 1
faulty_walk <0.0121 <0.0173 1.0 < 0.0166 1.0 1

Table: Neural ISMs vs Farkas Lemma; p - average prob bound from certificate;

Success Ratio - terminating runs out of 10 repeats in CEGIS; NN architecture -

(h1, h) are 2 hidden layers.

Abate et al (CS, Oxford, www.oxcav.org) Formal Synthesis with Neural Templates
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Neural ISMs - benchmarks

Benchmark Farkas’ Quantitative Neural Certificates

Lemma Program-Agnostic Program-Aware

Time  Learn Time Verify Time Learn Time Verify Time

persist_2d - 169.14 85.31 44.96 74.90
faulty marbles - 114.24 29.23 15.86 28.68
faulty unreliable - 123.85 45.48 18.34 33.97
faulty regions - 17.92 35.85 17.55 32.38
cliff crossing 0.11 134.61 19.02 21.27 29.07
repulse 0.19 16.65 5.00 6.49 3.74
repulse uniform 0.19 21.28 14.18 - =

repulse_2d 0.12 122.92 64.54 15.75 47.70
faulty varying 0.36 21.74 5.06 471 3.28
faulty_concave 0.39 49.12 13.37 13.49 7.82
fixed_loop 0.15 14.16 3.14 3.34 2.43
faulty_loop 0.16 25.52 3.81 3.73 2.66
faulty uniform 0.34 20.20 1.91 6.75 1.33
faulty rare 0.27 25.52 4.27 371 2.96
faulty_easyl 0.31 104.20 12.78 4.95 7.51
faulty ndecr 0.33 104.89 9.06 5.37 4.66
faulty walk 0.32 15.08 4.00 6.97 3.33

Table: Neural ISMs vs Farkas Lemma - Runtimes. Obviously slower! Learning
takes time.
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Outline

© Why this matters

© SAT and SMT - Satisfiability and Synthesis
9 Lyapunov Functions

@ Barrier Certificates

© FossIL

© Beyond Lyapunov and Barriers: Ranking Functions and
Supermartingales

@ Model Hybridisations: Neural Abstractions

© Application: Safe Autonomy and Control Synthesis
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Outline

@ Model Hybridisations: Neural Abstractions
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Model hybridisations

@ motivation: safety verification of non-linear dynamical systems
x = f(x) over x € X C R", is in general hard, not automated
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Model hybridisations

@ motivation: safety verification of non-linear dynamical systems
x = f(x) over x € X C R", is in general hard, not automated

@ leverage formal abstractions for verification

@ namely, simpler models encapsulating original dynamics (sim, bisim)

A
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-
W

Abate et al (CS, Oxford, www.oxcav.org)

Formal Synthesis with Neural Templates

N

April 2023

44 /58



Model hybridisations

@ motivation: safety verification of non-linear dynamical systems
x = f(x) over x € X C R", is in general hard, not automated

@ leverage formal abstractions for verification

@ namely, simpler models encapsulating original dynamics (sim, bisim)

A

-

-
W

N
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Model hybridisations

motivation: safety verification of non-linear dynamical systems
x = f(x) over x € X C R", is in general hard, not automated

leverage formal abstractions for verification

namely, simpler model encapsulating original dynamics

hybridisation: within X', convert f(x) to hybrid system H with
multiple partitions, where

each partition has own flow F(x) & transitions to other parts

upper-bound € to error, so that

X=f(x)+d, |d|<e xexX
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Model hybridisations

motivation: safety verification of non-linear dynamical systems
x = f(x) over x € X C R", is in general hard, not automated

leverage formal abstractions for verification

namely, simpler model encapsulating original dynamics

hybridisation: within X', convert f(x) to hybrid system H with
multiple partitions, where

each partition has own flow f(x) & transitions to other parts
more partitions — more complex (larger) abstraction

mesh size & shape important in achieving low error bound e

Abate et al (CS, Oxford, www.oxcav.org) Formal Synthesis with Neural Templates April 2023
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Model hybridisations as “neural abstractions’°

Wiix + b1 =0

Wisx + b1o =0

@ neural network A\ as abstraction f of nonlinear vector field f
e N(x):R" — R" approximates f(x)

o H neurons — 2" total modes (at most! but not, really)

IOA. Abate, A. Edwards, and M. Giacobbe, “Neural Abstractions,” NeurlPS, Advances in Neural Information Processing
Systems 35, 26432-26447, 2022.
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Model hybridisations as neural abstractions - Synthesis

f(x), X

\

N
T

valid
Learner @— N

~__

c

@ synthesis of neural abstractions via CEGIS

© learn parameters of NN A w/ MSE loss £ = ||f(S) — N(S)||, S finite
@ SMT solver provides formal upper bound ¢ on approximation error:

dce X s.t. |[f(c) —N(c)|| > €
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Model hybridisations as neural abstractions - synthesis

@ Learner

» multi-output regression when outputs of different scales is difficult
» instead of learning N'(x) : R” — R”, learn n nets N;(x) : R" — R

ReLU

@ Verifier: dReal

Abate et al (CS, Oxford, www.oxcav.org) Formal Synthesis with Neural Templates April 2023
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Model hybridisations as neural abstractions - verification

Concrete nonlinear system

Neural abstraction

Abstraction
synthesis

Model
translation

Safety
verification

0.0

- L i o

Flowpipe propagation Abstract hybrid-automaton

Abate et al (CS, Oxford, www.oxcav.org) Formal Synthesis with Neural Templates April 2023 48 /58



Model hybridisations as neural abstractions - examples

concrete model neural abstraction
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Model hybridisations as neural abstractions - benchmarks

Benchmark = NP3

Error

Benchmark = Jet Engine

w

Error

Benchmark = Buckling

Error

Benchmark = Steam

Error

Benchmark = 4DLV.

10° 10 104 10°
Partitions

Abate et al (CS, Oxford, www.oxcav.org)

10 10¢

Partitions

~#- ASM
. MARM
- NA

error denotes accuracy

NA = neural abstractions

mesh-based hybridisations:

RA = rectangular abst. on
rectangular mesh

ASM = affine abst. on
simplicial mesh

MARM = multi-affine abst. on

rectangular mesh

Formal Synthesis with Neural Templates April 2023
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Model hybridisations as neural abstractions - benchmarks

Width 2 3 4 5 6 7 8 9 10
Benchmark

4DLV 0.60 | 0.667 | 0.567 | 0.633 | 0.367 0.0 0.0 0.0 0.0
Buckling 1.0 | 0.50 | 0.167 | 0.333 0.0 0.0 0.0 0.0 0.0
Coupled-VdP 1.0 1.0 1.0 | 0.933 | 0.067 | 0.40 | 0.20 0.0 0.0
Exponential 1.0 1.0 1.0 1.0 | 0.933 | 0.733 | 0.433 0.0 0.0
Jet Engine 0.533 | 0.267 | 0.333 | 0.067 0.0 0.0 0.0 0.0 0.0
Log 0.867 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
NP3 0.967 1.0 | 0.967 | 0.433 | 0.033 0.0 0.0 0.0 0.0
Steam 0.967 1.0 1.0 1.0 1.0 | 0.967 | 0.80 | 0.967 | 0.633
VdP 0.967 | 0.967 1.0 1.0 1.0 | 0.667 | 0.567 0.0 0.0

@ NA vs ASM: proportion of experiments outperforming ASM
hybridisation for equivalent numbers of partitions.

o “Width” refers to width of NN
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Model hybridisations as neural abstractions - verification

@ initial states in Xp, bad states Xy
@ ensure no trajectory of f starting in Xy enters Xg over time horizon T

o safety verification via over-approximations of reachable set from Xj

0.50

—0.754

==
' Gz
sy

"M Reachable States
:' N Bad states
—»~ v EEE Initial States ~_y

g

-1.00
0.0
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Model hybridisations as neural abstractions - verification
@ initial states in Ap, bad states Xy
@ ensure no trajectory of f starting in Xp enters X5 over time horizon T
@ safety verification via over-approximations of reachable set from Xg

(a) Flow* reachable states, ' = 1.5s, (b) Flow* reachable states, T' = 1.5s,
7 =0.1s and 2" order Taylor model 7 =0.1s and 3" order Taylor model

7
AN

N R BPD,

<5

e

=
= e

b,k
T IS A LS

1.
-100 -0.75 -050 -0.25 000 025 050
x

o

0

(c) Neural Abstraction reachable states, 7' = 1.5s, 7 = 0.1s
Abate et al (CS, Oxford, www.oxcav.org) Formal Synthesis with Neural Templates April 2023 51/58



Model hybridisations as neural abstractions - verification

@ initial states in Xp, bad states Xy
@ ensure no trajectory of f starting in X enters X'z over time horizon T

@ safety verification via over-approximations of reachable set from Xg

Model T Flow* Neural Abstractions
™ § Safety Ver. t w M Safety Ver. t

Jet Engine 15 10 01 Yes 1.3 [10,16] 8 Yes 215
Steam Governor 2.0 10 0.1 VYes 62 [12] 29 Yes 219
Exponential 1.0 30 0.05 Blw 1034 [14,14] 12 Yes 308
Water Tank 20 - - No - [12] 6 Yes 49
Non-Lipschitz1 1.4 - - No - [10] 12 Yes 19
Non-Lipschitz2 1.5 - - No - [12,10] 32 Yes 59

@ ground truth is Safe - note that M << 2 - SoA is Flow*

Abate et al (CS, Oxford, www.oxcav.org)

Formal Synthesis with Neural Templates

April 2023

51/58



Neural abstractions: alternative templates

Piecewise Piecewise affine Nonlinear
constant
Activation
function H RelLU Sigmoid
Equivalent LHA | with LHA 1l with Nonlinear ODE
abstract model disturbance disturbance with disturbance
Safety verification Symbolic STC algorithm Taylor models
technology model checking
Safety veri- PHAVer SpaceEx Flow*
fication tool
April 2023 52/58
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Neural abstractions: alternative templates

7

)
S

(a) Neural PWC (b) Neural PWA (c) Sigmoidal
abstraction abstraction abstraction.

(a) Flowpipes for (b) Flowpipe for (c) Flowpipe for
neural PWC neural PWA sigmoidal model.

model. 11.6s model. 76.5s 1084.3s
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Outline

© Why this matters

© SAT and SMT - Satisfiability and Synthesis
9 Lyapunov Functions

@ Barrier Certificates

© FossIL

© Beyond Lyapunov and Barriers: Ranking Functions and
Supermartingales

@ Model Hybridisations: Neural Abstractions

© Application: Safe Autonomy and Control Synthesis
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Outline

© Application: Safe Autonomy and Control Synthesis
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Safe autonomous driving - setup*!

@ given: non-linear (3-dim) car dynamics, (2-dim) feedback controller
(v,w) for reference tracking

% (t) = vcosb(t)
2y(t) = vsind(t)
%H(t) =w

nA. Abate, S. Bogomolov, A. Edwards, K. Potomkin, S. Soudjani, P. Zuliani, “Safe Reach Set Computation via Neural
Barrier Certificates,” Under Review, 2023.
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Safe autonomous driving - setup*!

@ given: non-linear (3-dim) car dynamics, (2-dim) feedback controller
(v,w) for reference tracking

( ) = vcosf(t)
th(t) = vsin6(t)
d
a0(t) =
@ goal: safely execute closed-loop dynamics, avoiding obstacles in
environment

@ approach: safe Reach-Set computation with NN-based barrier
certificates

11A. Abate, S. Bogomolov, A. Edwards, K. Potomkin, S. Soudjani, P. Zuliani, “Safe Reach Set Computation via Neural
Barrier Certificates,” Under Review, 2023.

Abate et al (CS, Oxford, www.oxcav.org) | Formal Synthesis with Neural Templates April 2023 54 /58



Safe autonomous driving - approach
O from set of initial states Xp, given pair (v,w), generate
over-approximation of reach set via model trajectories over T
@ consider dual of over-approximation as unsafe set Xy
© generate sound barrier certificate with FOSSIL

(a) Linear system with with real

eigenvalues. (b) Spiralling stable dynamics.

(c) Jet engine system.
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Safe autonomous driving - approach

@ generalise over sets of initial states Xp, time horizons T, and input

pairs (v,w)
@ done via MetaNN (NN2), validated with SMT
highly accurate (~ 99%) outcomes

X
Generate training Simulation |[————
samples Xy > engine Xy FOSSIL C(z
(NN1)

T T
Training
data
MetaNN
v NN2
i Verifier
(SMT solver)
Slmulatlon Xb
engme
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Safe autonomous driving - case study

e 3D state space, 2 inputs (v,w) with tracking controller; dynamics:

2 x(t) = vcosf(t)
2 y(t) = vsind(t)
§0() =

Verifier
(SMT solver)|

afe falLsL
n i,

-

true

Simulation , Xu, @
Ao engine
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Safe autonomous driving - case study

@ 3D state space, 2 inputs (v,w) with tracking controller; dynamics:

%x(t) = vcosf(t)
%y(t) = vsin6(t)
20(t) = w

-
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Ongoing work!?
@ synthesis of provably-correct controllers (not discussed)

f(x),D
|

4
/\
valid

Learner Verifier 4

\_/

Cc

12A. Abate, |. Bessa, D. Cattaruzza, L. Cordeiro, C. David, P. Kesseli, D. Kroening and E. Polgreen, “Automated Formal
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@ automated, sound, relatively scalable
— applications in provably-correct synthesis/safe learning, for autonomy

@ as we speak, we're looking at:
» controlled, stochastic models

> s cles”

12
A. Abate, |. Bessa, D. Cattaruzza, L. Cordeiro, C. David, P. Kesseli, D. Kroening and E. Polgreen, “Automated Formal
Synthesis of Provably Safe Digital Controllers for Continuous Plants,” Acta Informatica, 57(3);72020.

Abate et al (CS, Oxford, www.oxcav.org) Formal Synthesis with Neural Templates April 2023 57/58



Thank you for your attention
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