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Automatic Paper-Reviewer Assignment
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Papers and Reviews

* Peer review
- Independent evaluation of scientic papers by reviewers
- Instrument for quality control and selection of publications
« Process with many weaknesses — little alternatives yet

« Initial Step: Paper-Reviewer Assignment
« Assignment of qualified reviewers to each paper
- Good match of topic (paper) and expertise (reviewer)
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Assignment Process

 Traditional assignment process
« Classic assignment by journal editor or program committee chair
-« “Bidding" of reviewers on papers and semi-automatic assignment
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Automatic Assignment

 |dea: Assignment of reviewers to papers using machine learning
« First solutions developed already in 2010 for NeurlPS
« Two systems available: TPMS and AutoBid (open-source variant of TPMS)
- TPMS de-facto standard employed by several conferences

« Main principle: Topic modeling
- Extraction of topics from corpus of representative publications
- Matching of papers with reviewers in the topic space
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From Papers to Vectors

 Step 1: Mapping of papers to a feature space

- Extraction and preprocessing of text from paper document (e.g. PDF)

 Paper z represented as bag-of-words vector x € N

Paper z
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From Vectors to Topics

« Step 2: Automatic discovery of topics from feature vectors
» Topic = set of co-occuring words (e.g., “crypto” and “key")
- Different algorithms for topic modelling available, e.g. LDA
 Each feature vector represented as mixture of topics

Paper corpus Feature space
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From Vectors to Topics

« Step 2: Automatic discovery of topics from feature vectors
» Topic = set of co-occuring words (e.g., “crypto” and “key")
- Different algorithms for topic modelling available, e.g. LDA
 Each feature vector represented as mixture of topics
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From Topics to Expertise

 Step 3: Matching of reviewers and papers along topics
 Paper submission mapped to feature vector x
- Combined publications of each reviewer also mapped to vectors
« Ranking of reviewers based on similarity in topic space

Topic space
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Real Examples

» Reviewer: Martina Lindorfer
O TOp|C 33% app | android| applic ’ permiss’ user ’

o Toplc 26% malwar detect | malici ’ samp 1 | featur |

o TOPIC 08% analysi input’ fuzz ’ execut| test |

 Reviewer: Matteo Maffei

o TOp|C 269 random  signatur = secur key | scheme ...

O TOp|C 21 % transact | bitcoin| contract | payment | blockchain |

o TOp|C ']4% protocol| model ’ secur | messag | session ’
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Construction of Adversarial Papers
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Attack Overview

 |dea: Adversarial Paper
- Smart changes to paper misleading reviewer assignment
- Manipulation of ranking: Removal and addition of reviewers
- Minimal and unobtrusive changes to paper only

Topic space
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Attack Overview
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Attack Overview

 |dea: Adversarial Paper
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How hard could it be?

[

* Despite hype on adversarial learning: No suitable work for us @

 Two tricky challenges
« No inverse map from topic space back to problem space
« Unobtrusive changes lead to side effects in the feature space
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How hard could it be?

* Despite hype on adversarial learning: No suitable work for us @

 Two tricky challenges
« No inverse map from topic space back to problem space
« Unobtrusive changes lead to side effects in the feature space

Topic space Generated paper Modified paper Topic space
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Our Attack Strategy

 Alternating beweeting topic space and problem space
- Beam search in topic space suggests small steps
« Realization of steps using transformations in problem space
- |terative process moving towards selected positions

Topic space Problem space
Suggestion e _
Beam searcin S > T rovyformations
ower conoioates O0nf & Out of pojper
.‘ ,,,, 40 s
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Navigation: Beam Search

 Each reviewer represented by word probabilities of topics 202 HEEEREE

» Restriction to words with minimal side effect (unique use) 20% _attack | model

« Search using k directions in parallel drawn from word probabilites
- Direction: Increments and decrements of words
- L1 Constraint on total modified words in paper N ¢
« L. Constraint on total modification per words
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Driving: Transformations

« Selection from set of available transformations

 Support for incrementing and decrementing words

o Different level of stealthiness and side effects

<€ >

« Two groups of transformations
- Format and encoding: Dirty tricks on text representation in paper
 Text transformation:  Semantics-preserving changes
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Driving: Format and Encoding

« Large attack surface due to complex PDF format
 Support of accessibility features, scripting and several encodings
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Driving: Text Transformations
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Driving: Text Transformations

« Neural word embedding trained on 11,000 security papers
- Removal of words using synonyms from embedding

Originaj text intrusion = detection - attack ’ identification ’ Changed text

x86 binary > 1386 ’ software

Synornyms and sumidor woros
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Driving: Text Transformations

« Neural word embedding trained on 11,000 security papers
- Removal of words using synonyms from embedding

Original text intrusion = detection - attack ’ identification Changed text

x86 binary > 1386 ’ software

Synornyms and sumidor woros

 Bibliography database of 11,000 security papers
« Insertion of words using additional bibliographic references

Requegted crypto [22] M. Aizatulin, A. Gordon, J. Jirjens: Extracting New
> and verifying cryptographic models from C protocol
words model code by symbolic execution. CCS, 2011 reference
Often helpful sde effects!
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Driving: Text Transformation

 Large language model for fabricating text with given words
 Transformer model OPT-350m finetuned to text from security papers

«  With our resources reasonable text, but no comparison to larger models

exempl’ broad ’ think ’ lip ’ lobe ’ inaud ’ speaker’ demot ’

l l

The recent rise in popularity for social The 1lip speakers inaudible voice B

networking services (SNS) exemplifies how assistants are demoted away from human /koudA%HATM'CﬁF )

users are using them today. Users can listeners by adding an additional layer VM4A1#149L6'VVOW116 Ut one
share content with others by posting it between them (lobes). This approach can 6w0$b

on their own broadened thinking. potentially mitigate some attacks .. prragr
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Navigation & Driving: Putting it together

 Each transformation assigned a stealth level and a budget
- Stealth transformations preferred until their budgets exceeded
« Encoding and format tricks only when no text budget left
- Example: 10 synonyms, 10 references, 10 generations, ...

- lterative process alternating between search and transformations

X3¢
"
.

 Control using total attack budget and number of switches "o
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Empirical Evaluation
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Simulated Conference

 Simulation of IEEE Symposium on Security and Privacy 2020
- PC of 165 reviewers, each represented by 20 of their papers
« 32 real paper submissions with source code from arXiv
- Top-5 ranked reviewers assigned to each submission (no load balancing)

+ Two attack scenarios 6
- White-box attack: Adversary has direct access to topic model
- Black-box attack: Adversary trains own surrogate models ‘ ‘
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White-Box Scenario

« Experiment: Selection and rejection of reviewers within Top-10
- Evaluation of attack budget and number of switches

B Text
100% - .

" + Encoding B 4+ Format

80% -

60% -

40% -

Attack success rate

20% -

0% -

0.25 0.5 1 2 4 1 2 4 g8 16
Attack budget # switches
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Black-Box Scenario

« Experiment: Attacks with surrogate models
 Training of ensemble of surrogate models on 70% of original data
« Transfer of best attack to topic model of conference system

100% -

i —— —v
0% - —y— —Y
L Y B
gv;
O
@)
S 40% -
< —¥%— Selection
20% - —¥— Rejection
—%—  Substitution
O% 1 1 1 1 1 1 1 1
1 2 3 4 5) 6 7 8

Ensemble size
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Black-Box Scenario

« Experiment: Attacks with surrogate models
 Training of ensemble of surrogate models on 70% of original data
« Transfer of best attack to topic model of conference system
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80% - | —T evusemble size ncreoseo
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Black-Box Scenario

« Experiment: Transferability for different conference systems
- Attacks from 8 surrogate models transfered to conference systems
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22 RN CARNRRFRRERRRRR  RRRRRFRRRRRVRRRROCCD fOOOOOO 0000011010
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O |V NVFFF VLV CCRRCCFCRCFRRRRRRFRRRRRRRE Ry FRvVEEn-N0TIIEINOANOEELAINAE 10

0 20 40 60 80 100
Success of adversarial papers

Conference systems

Machine Learning iE
Slide 26 and Security




Black-Box Scenario

« Experiment: Transferability for different conference systems
- Attacks from 8 surrogate models transfered to conference systems
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Plausibility

« Evaluation of plausibility with small user study
« 21 security researchers perform mini-reviews on papers
- Participants asked about quality of paper and suspiciousness

How do you rate the literature quality and bibliography?

How do you rate the overall writing quality?
@ I |

- I : : L Nosignificant

How likely is the paper manipulated by an automated system?
I

1 2 3 4 5
Low Specified rating
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Conclusions
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Aftermath

« Possible defenses
- Sanitization and anomaly detection in PDF files
 Prevention of format and encoding tricks with OCR recognition
« Defenses against text transformations currently unknown

 Notification of TPMS and AutoBid developers

* Positive email exchange — No time for defenses currently §3

« |s this a threat? Personal take: Yes!
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Conclusions

« New attack against automatic reviewer-paper assignment
 Hybrid attack strategy in feature space and problem space
- Minimal and unobtrusive transformations of papers

 Broader perspective
 Decisions based on learning models inherently insecure
- More to explore off the beaten path of adversarial learning

« More at https://github.com/rub-syssec/adversarial-papers
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Thanks! Questions?
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