When Papers Choose their Reviewers: **Adversarial Machine Learning in Peer Review**

Konrad Rieck VISP Distinguished Lecture

Machine Learning and Security

Background Paper

No more Reviewer #2: Subverting Automatic Paper-Reviewer **Assignment using Adversarial Learning** USENIX Security Symposium, August 2023

Thorsten Eisenhofer, Erwin Quiring, Jonas Möller, Doreen Riepel, Thorsten Holz, and Konrad Rieck

Automatic Paper-Reviewer Assignment

Slide 3

Papers and Reviews

• Peer review

- Independent evaluation of scientic papers by reviewers
- Instrument for quality control and selection of publications
- Process with many weaknesses little alternatives yet
- Initial Step: Paper-Reviewer Assignment
 - Assignment of qualified reviewers to each paper
 - Good match of topic (paper) and expertise (reviewer)

ers by reviewers tion of publications alternatives yet

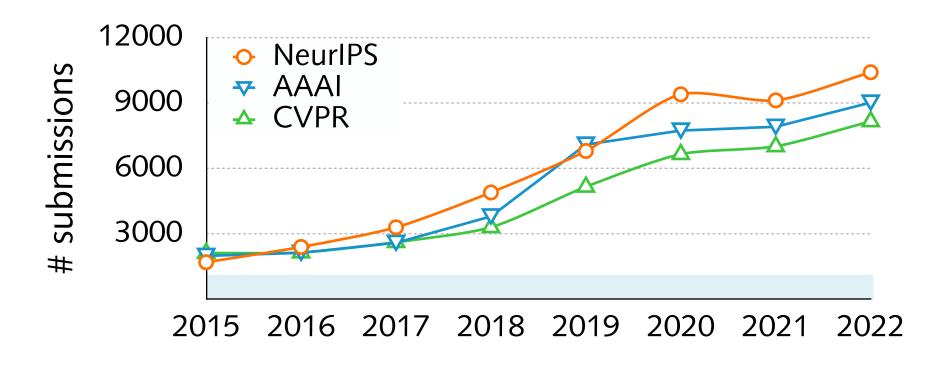
ich paper tise (reviewer)

> > >

- Traditional assignment process
 - Classic assignment by journal editor or program committee chair
 - "Bidding" of reviewers on papers and semi-automatic assignment

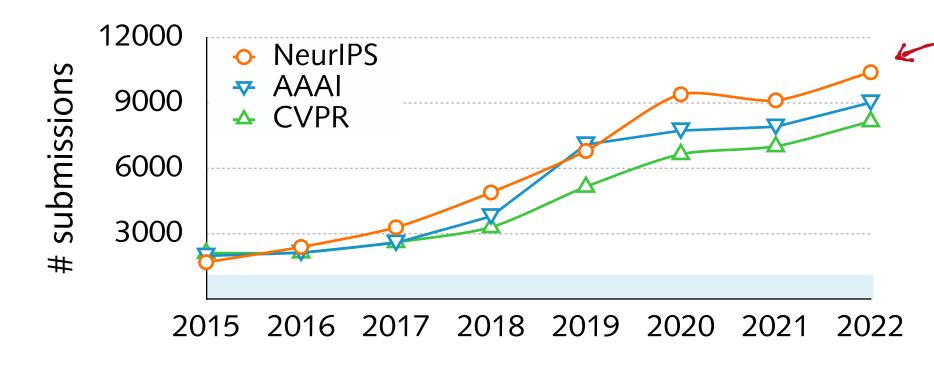
- Traditional assignment process
 - Classic assignment by journal editor or program committee chair
 - "Bidding" of reviewers on papers and semi-automatic assignment

Manual bidding increasingly impossible for hot topics 🔴



- Traditional assignment process
 - Classic assignment by journal editor or program committee chair
 - "Bidding" of reviewers on papers and semi-automatic assignment

Manual bidding increasingly impossible for hot topics

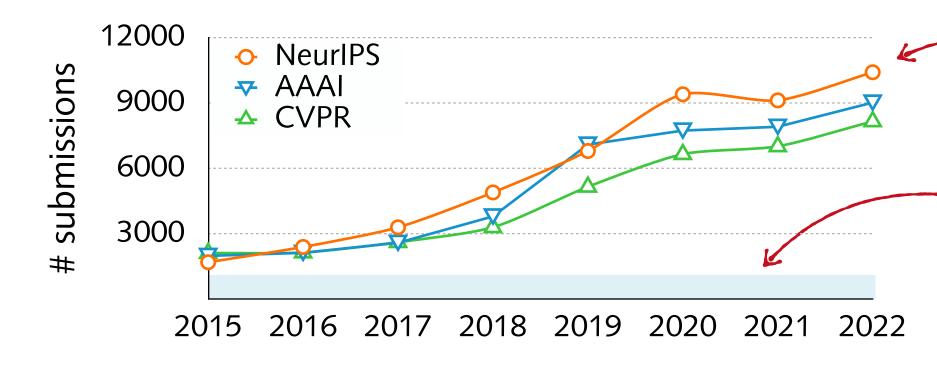


> 10.000 submissions. Reading each paper's title (~3s) takes 8 hours!

> > >

- Traditional assignment process
 - Classic assignment by journal editor or program committee chair
 - "Bidding" of reviewers on papers and semi-automatic assignment

Manual bidding increasingly impossible for hot topics



- 10.000 submissions. Reading each paper's title (~3s) takes 8 hours!
 - Not so hot research topics,
 e.g. computer security

> > >

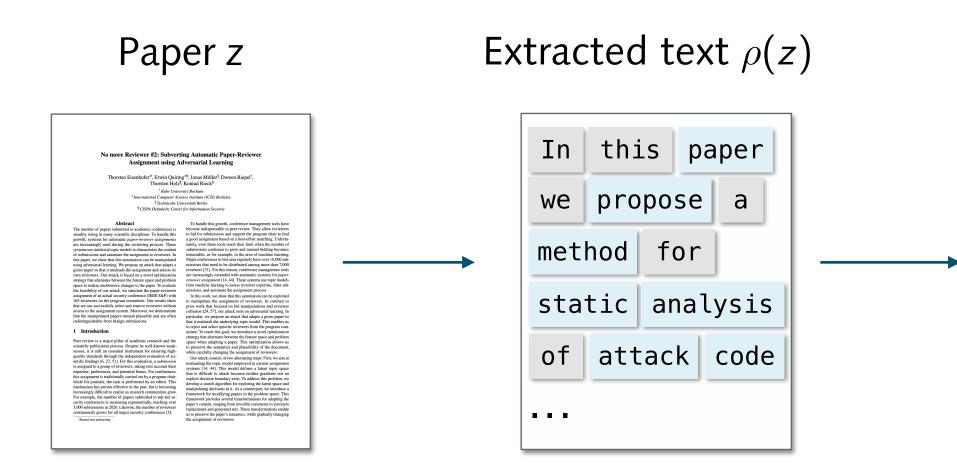
Automatic Assignment

- Idea: Assignment of reviewers to papers using machine learning
 - First solutions developed already in 2010 for NeurIPS
 - Two systems available: TPMS and AutoBid (open-source variant of TPMS)
 - TPMS de-facto standard employed by several conferences
- Main principle: **Topic modeling**
 - Extraction of topics from corpus of representative publications
 - Matching of papers with reviewers in the topic space

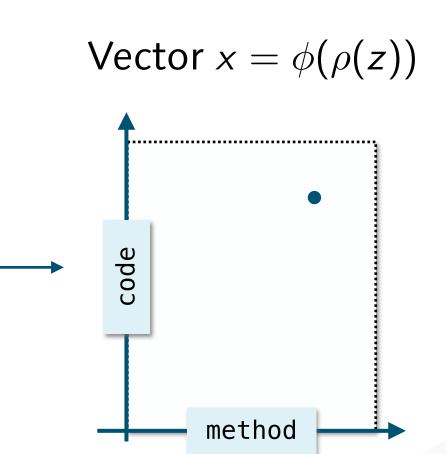
From Papers to Vectors

• Step 1: Mapping of papers to a feature space

- Extraction and preprocessing of text from paper document (e.g. PDF)



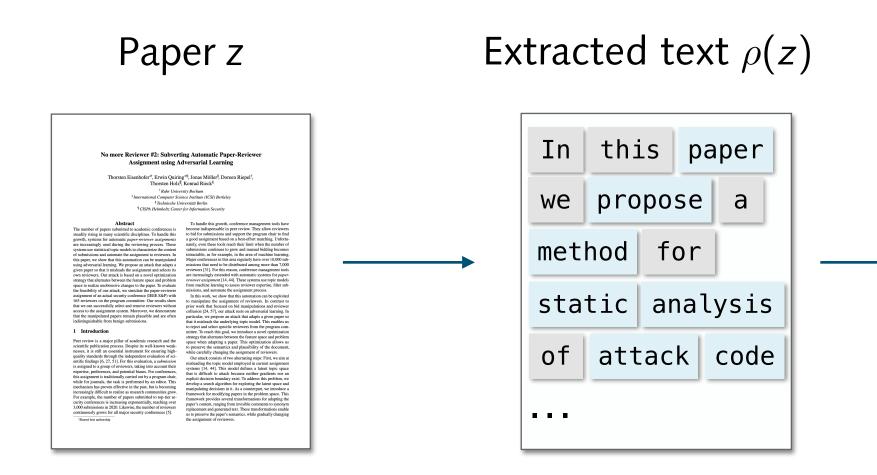
• Paper z represented as bag-of-words vector $x \in \mathbb{N}^{|V|}$ over vocabulary V

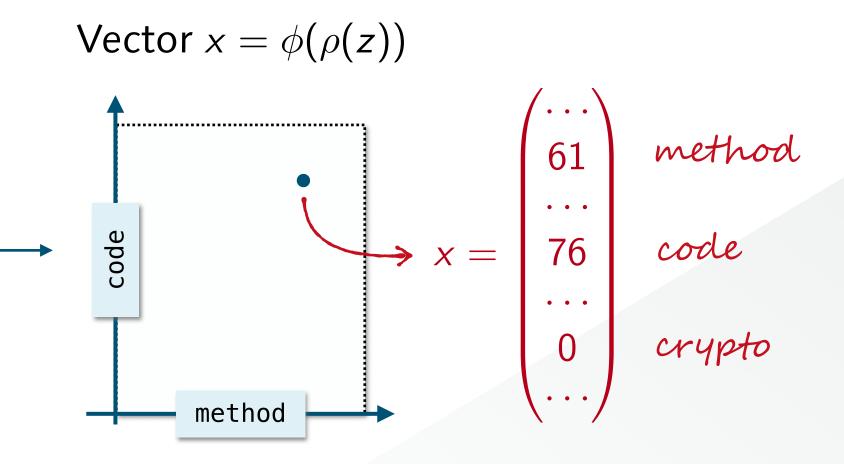


From Papers to Vectors

Step 1: Mapping of papers to a feature space

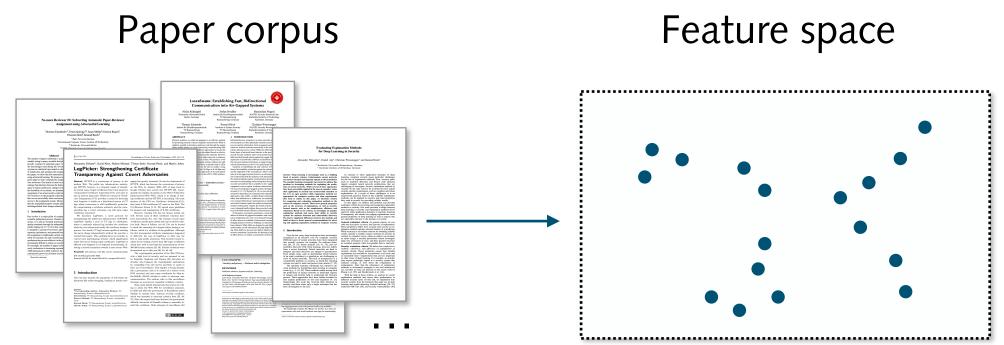
- Extraction and preprocessing of text from paper document (e.g. PDF)
- Paper z represented as bag-of-words vector $x \in \mathbb{N}^{|V|}$ over vocabulary V





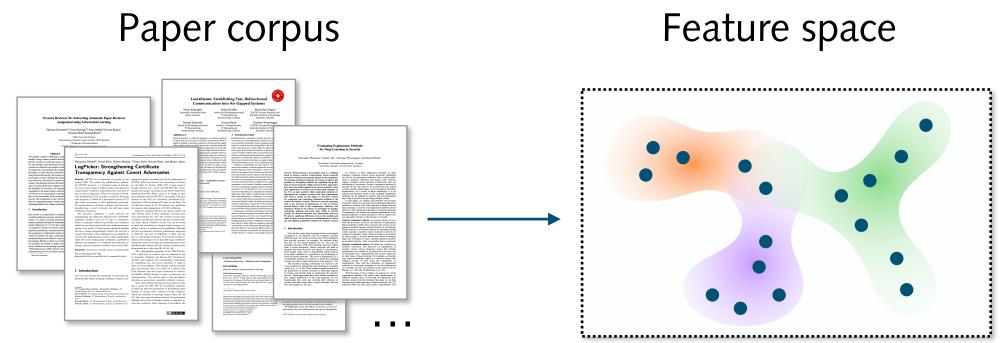
From Vectors to Topics

- Step 2: Automatic discovery of topics from feature vectors
 - Topic = set of co-occuring words (e.g., "crypto" and "key")
 - Different algorithms for topic modelling available, e.g. LDA
 - Each feature vector represented as mixture of topics



From Vectors to Topics

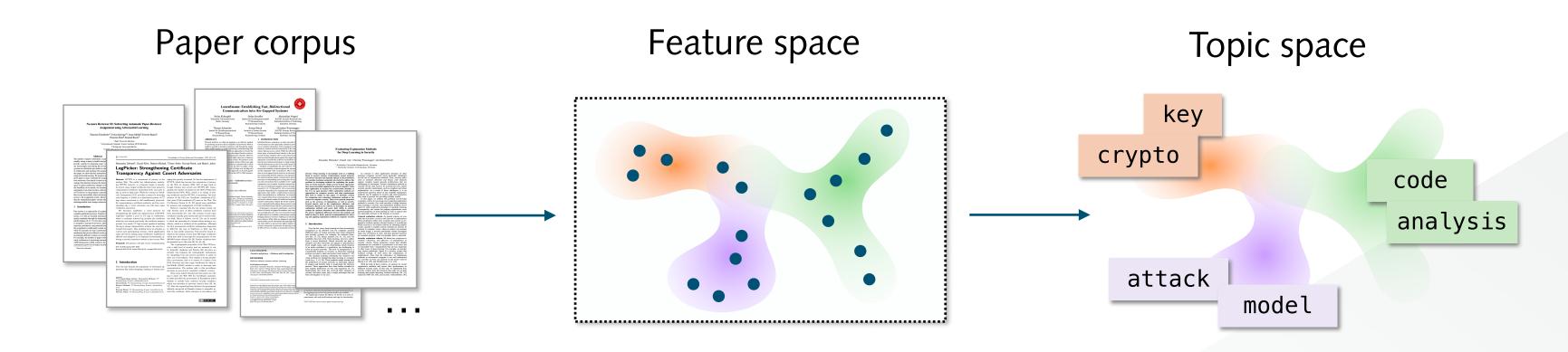
- Step 2: Automatic discovery of topics from feature vectors
 - Topic = set of co-occuring words (e.g., "crypto" and "key")
 - Different algorithms for topic modelling available, e.g. LDA
 - Each feature vector represented as mixture of topics



Machine Learning and Securit

From Vectors to Topics

- **Step 2: Automatic discovery of topics from feature vectors**
 - Topic = set of co-occuring words (e.g., "crypto" and "key")
 - Different algorithms for topic modelling available, e.g. LDA
 - Each feature vector represented as mixture of topics

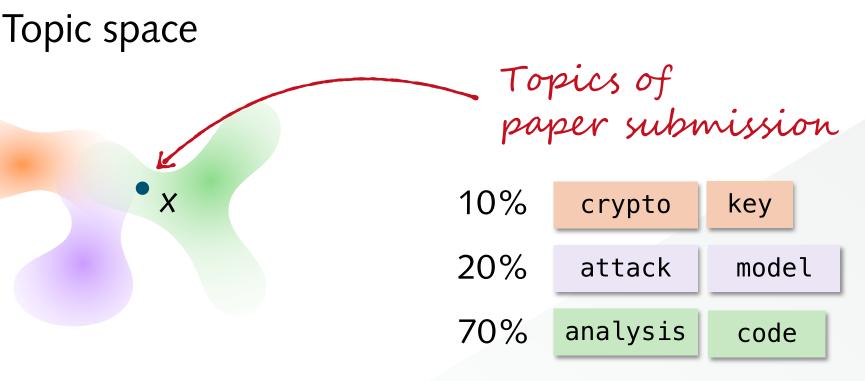


- Step 3: Matching of reviewers and papers along topics
 - Paper submission mapped to feature vector x
 - Combined publications of each reviewer also mapped to vectors
 - Ranking of reviewers based on similarity in topic space

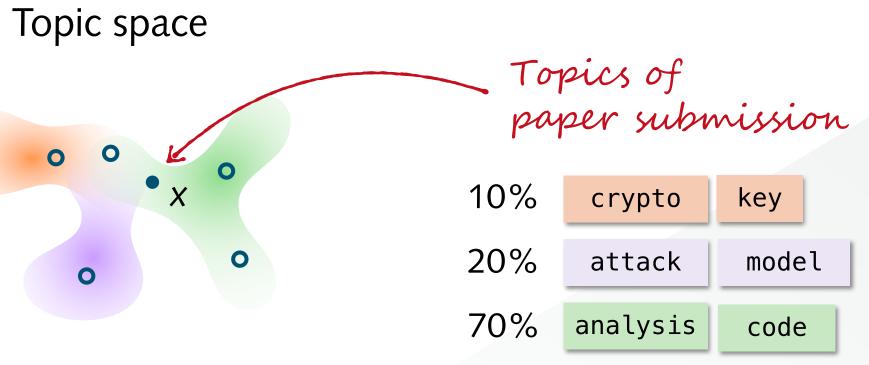
Topic space

Machine Learning and Securit

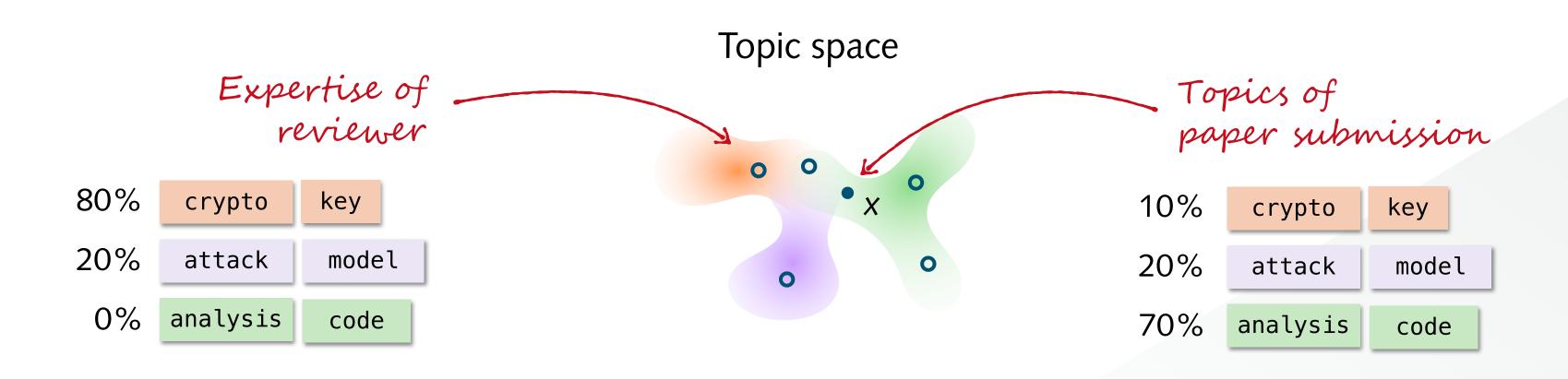
- **Step 3: Matching of reviewers and papers along topics**
 - Paper submission mapped to feature vector x
 - Combined publications of each reviewer also mapped to vectors
 - Ranking of reviewers based on similarity in topic space



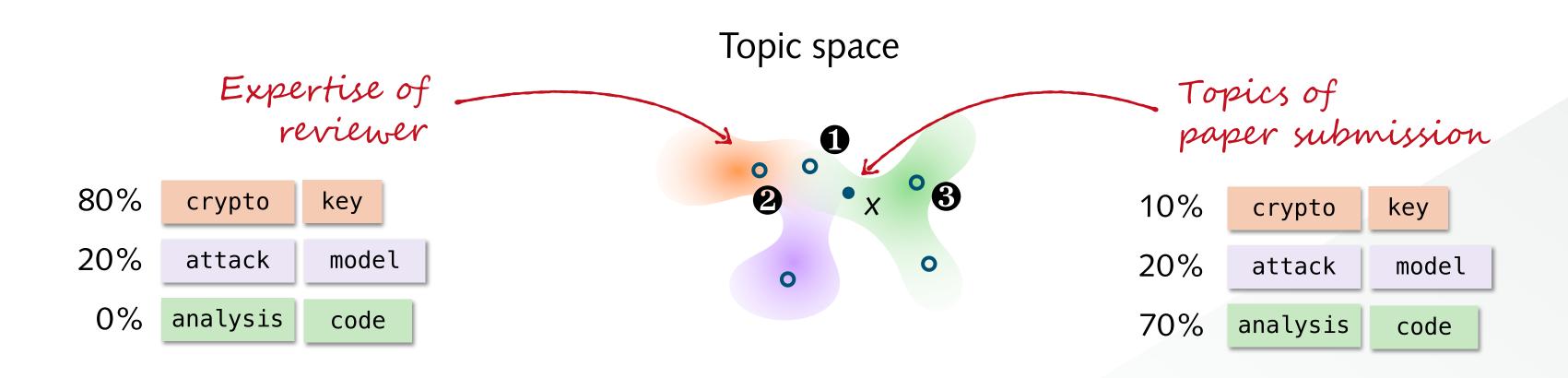
- **Step 3: Matching of reviewers and papers along topics**
 - Paper submission mapped to feature vector x
 - Combined publications of each reviewer also mapped to vectors
 - Ranking of reviewers based on similarity in topic space



- **Step 3: Matching of reviewers and papers along topics**
 - Paper submission mapped to feature vector x
 - Combined publications of each reviewer also mapped to vectors
 - Ranking of reviewers based on similarity in topic space



- **Step 3: Matching of reviewers and papers along topics**
 - Paper submission mapped to feature vector x
 - Combined publications of each reviewer also mapped to vectors
 - Ranking of reviewers based on similarity in topic space



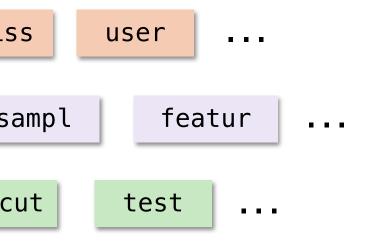
Real Examples

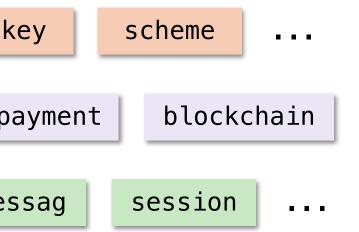
• Reviewer: Martina Lindorfer

 Topic 33% 	appa	ndroid	applic	permis
 Topic 26% 	malwar	detect	malici	Sa
 Topic 08% 	analysi	input	fuzz	exect

Reviewer: Matteo Maffei

•	Topic 26%	random	signatur	secur	k
•	Topic 21%	transact	bitcoin	contract	pa
•	Topic 14%	protocol	model	secur	mes



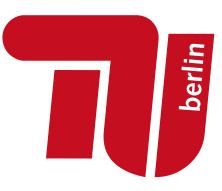


. . .

> > >

Construction of Adversarial Papers

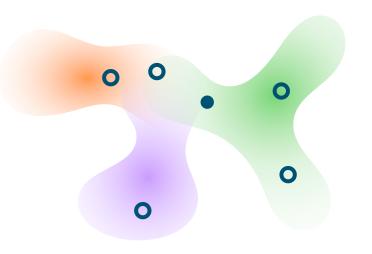
Slide 11



Machine Learning and Security

- Idea: Adversarial Paper

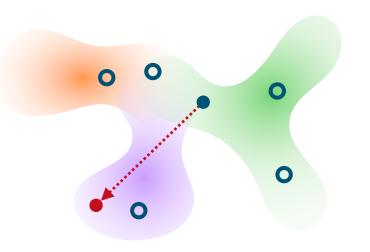
 - Smart changes to paper misleading reviewer assignment • Manipulation of ranking: Removal and addition of reviewers • Minimal and unobtrusive changes to paper only



Topic space

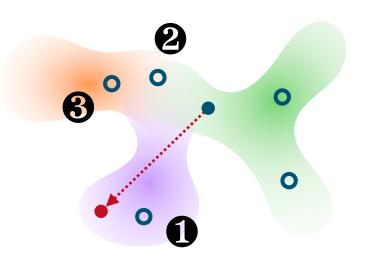
- Idea: Adversarial Paper

 - Smart changes to paper misleading reviewer assignment • Manipulation of ranking: Removal and addition of reviewers • Minimal and unobtrusive changes to paper only



Topic space

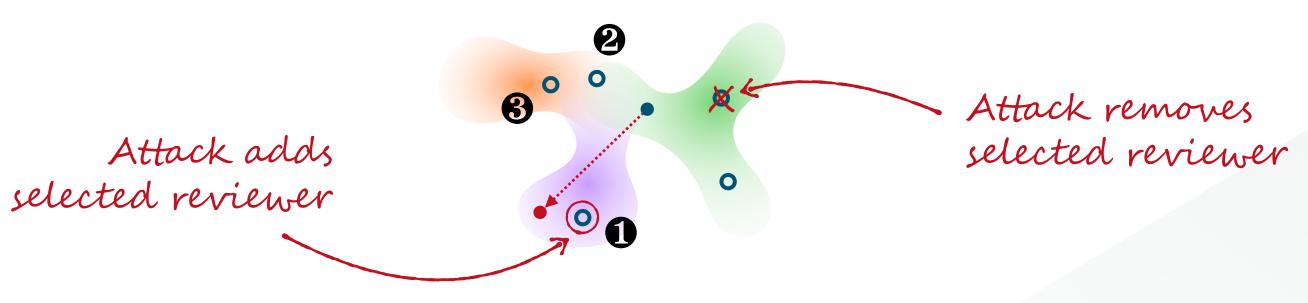
- Idea: Adversarial Paper
 - Smart changes to paper misleading reviewer assignment
 - Manipulation of ranking: Removal and addition of reviewers
 - Minimal and unobtrusive changes to paper only



- Topic space

- Idea: Adversarial Paper

 - Smart changes to paper misleading reviewer assignment • Manipulation of ranking: Removal and addition of reviewers • Minimal and unobtrusive changes to paper only



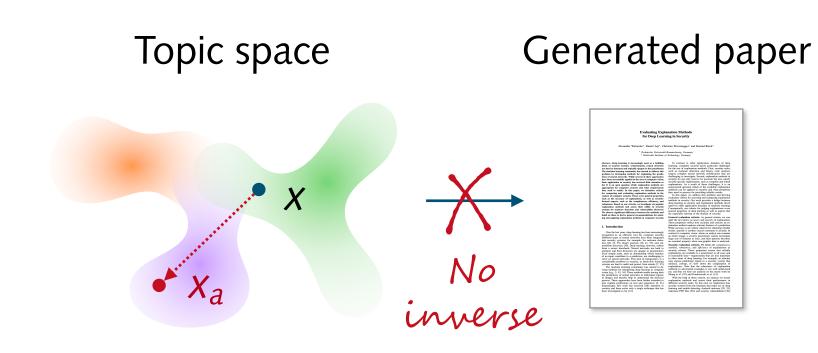
Topic space

How hard could it be?

- Despite hype on adversarial learning: No suitable work for us 😢
- Two tricky challenges
 - No inverse map from topic space back to problem space
 - Unobtrusive changes lead to side effects in the feature space

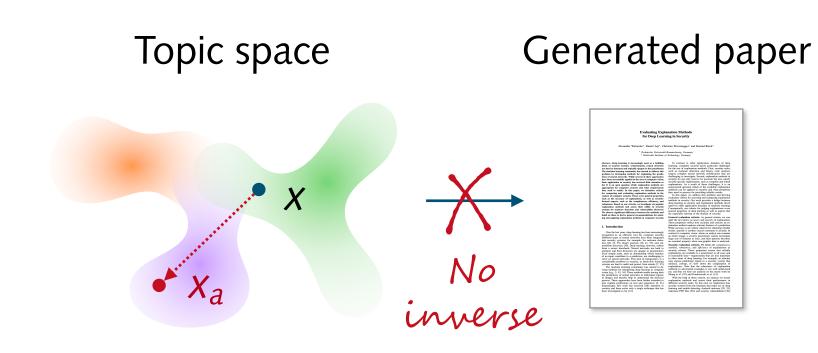
How hard could it be?

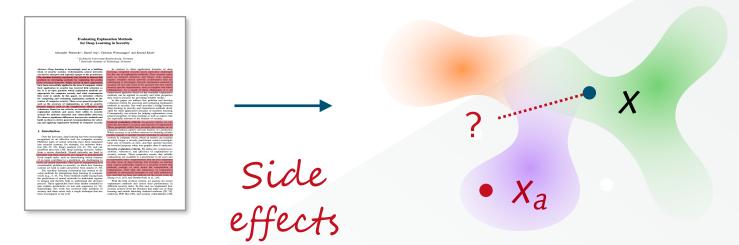
- Despite hype on adversarial learning: No suitable work for us 😢
- Two tricky challenges
 - No inverse map from topic space back to problem space
 - Unobtrusive changes lead to side effects in the feature space



How hard could it be?

- Despite hype on adversarial learning: No suitable work for us 😥
- Two tricky challenges
 - No inverse map from topic space back to problem space
 - Unobtrusive changes lead to side effects in the feature space





Our Attack Strategy

- Alternating beweeting topic space and problem space
 - Beam search in topic space suggests small steps
 - Realization of steps using transformations in problem space
 - Iterative process moving towards selected positions

Topic space

Problem space

Outcome

Transformations

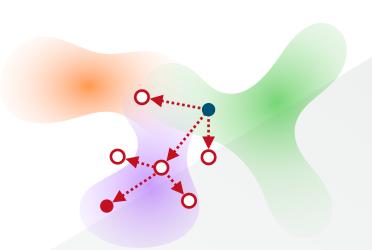
Machine Learning and Securit

Navigation: Beam Search

• Each reviewer represented by word probabilities of topics 80% crypto key • Restriction to words with minimal side effect (unique use) model 20% attack

Search using k directions in parallel drawn from word probabilites

- Direction: Increments and decrements of words
- L₁ Constraint on total modified words in paper
- L_{∞} Constraint on total modification per words



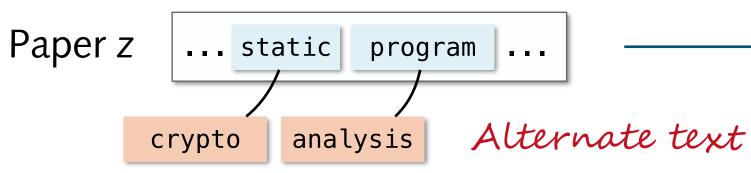
Driving: Transformations

- Selection from set of available transformations
 - Support for incrementing and decrementing words
 - Different level of stealthiness and side effects

- Two groups of transformations
 - Format and encoding: Dirty tricks on text representation in paper
 - Text transformation: Semantics-preserving changes

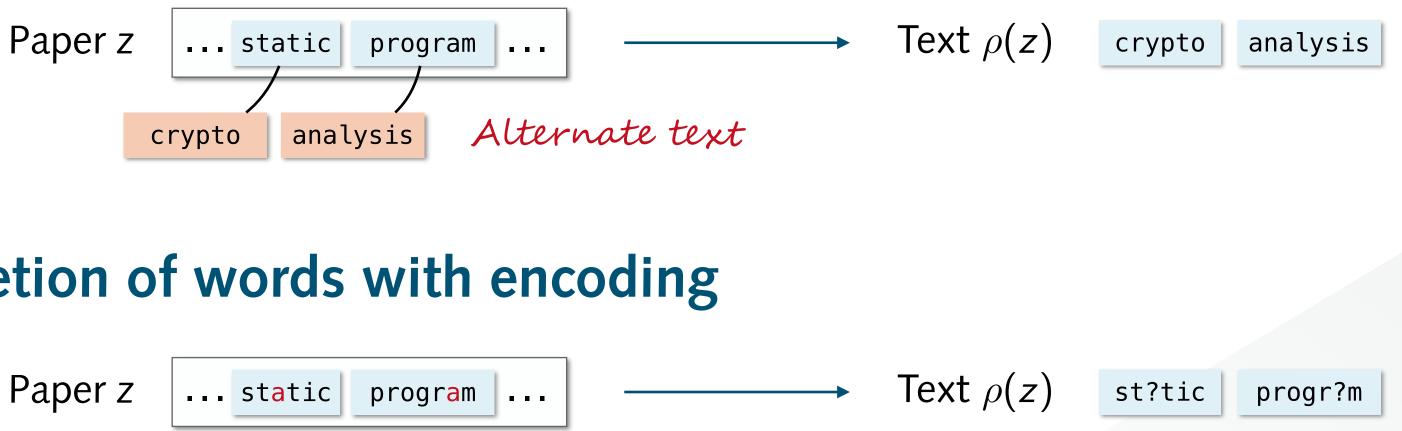
- Large attack surface due to complex PDF format
 - Support of accessibility features, scripting and several encodings

- Large attack surface due to complex PDF format
 - Support of accessibility features, scripting and several encodings
- Example: Subsitution with accessibility feature



Text $\rho(z)$ crypto analysis

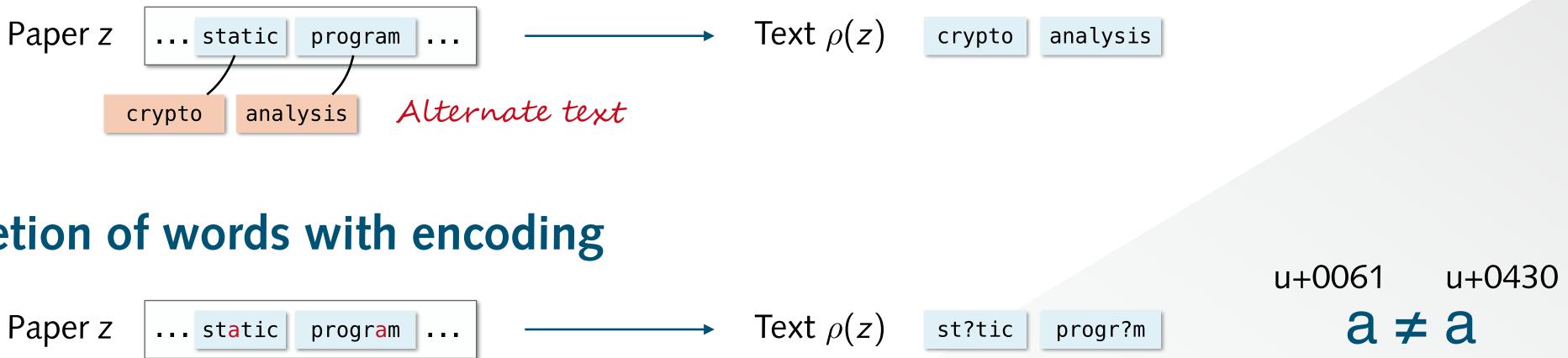
- Large attack surface due to complex PDF format •
 - Support of accessibility features, scripting and several encodings
- Example: Subsitution with accessibility feature



Example: **Deletion of words with encoding**

Homoglyphs

- Large attack surface due to complex PDF format •
 - Support of accessibility features, scripting and several encodings
- Example: Subsitution with accessibility feature



Example: **Deletion of words with encoding**

Homoglyphs

Driving: Text Transformations

Slide 19

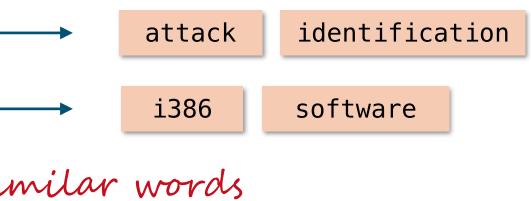
Machine Learning and Security

Driving: Text Transformations

- Neural word embedding trained on 11,000 security papers
 - Removal of words using synonyms from embedding

Original text	intrusion		detection]
		x86	binary]
			Synonyms and si	

)0 security papers n embedding



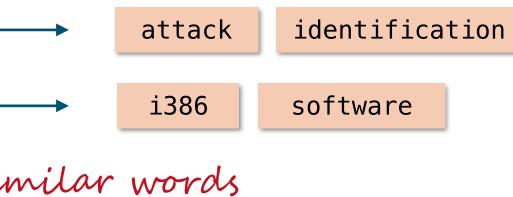
Driving: Text Transformations

- Neural word embedding trained on 11,000 security papers
 - Removal of words using synonyms from embedding

Original text	intrusion	detection		
	×86	binary]	
		Synonyms and si		

- Bibliography database of 11,000 security papers
 - Insertion of words using additional bibliographic references

)0 security papers n embedding



Changed text

papers iographic reference

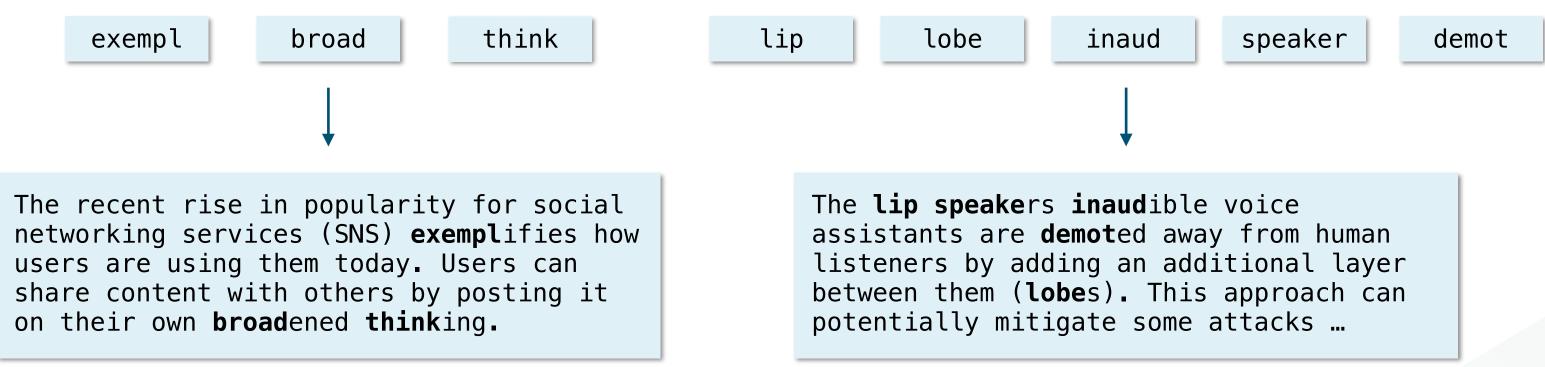
[22] M. Aizatulin, A. Gordon, J. Jürjens: Extracting and verifying cryptographic models from C protocol code by symbolic execution. CCS, 2011

New reference

Often helpful side effects!

Driving: Text Transformation

- Large language model for fabricating text with given words
 - Transformer model OPT-350m finetuned to text from security papers
 - With our resources reasonable text, but no comparison to larger models



Addition of multiple words in one paragraph

Navigation & Driving: Putting it together

• Each transformation assigned a stealth level and a budget

- Stealth transformations preferred until their budgets exceeded
- Encoding and format tricks only when no text budget left
- Example: 10 synonyms, 10 references, 10 generations, ...
- Iterative process alternating between search and transformations
 - Control using total attack budget and number of switches

rch and transformations number of switches

Empirical Evaluation

Slide 22

Simulated Conference

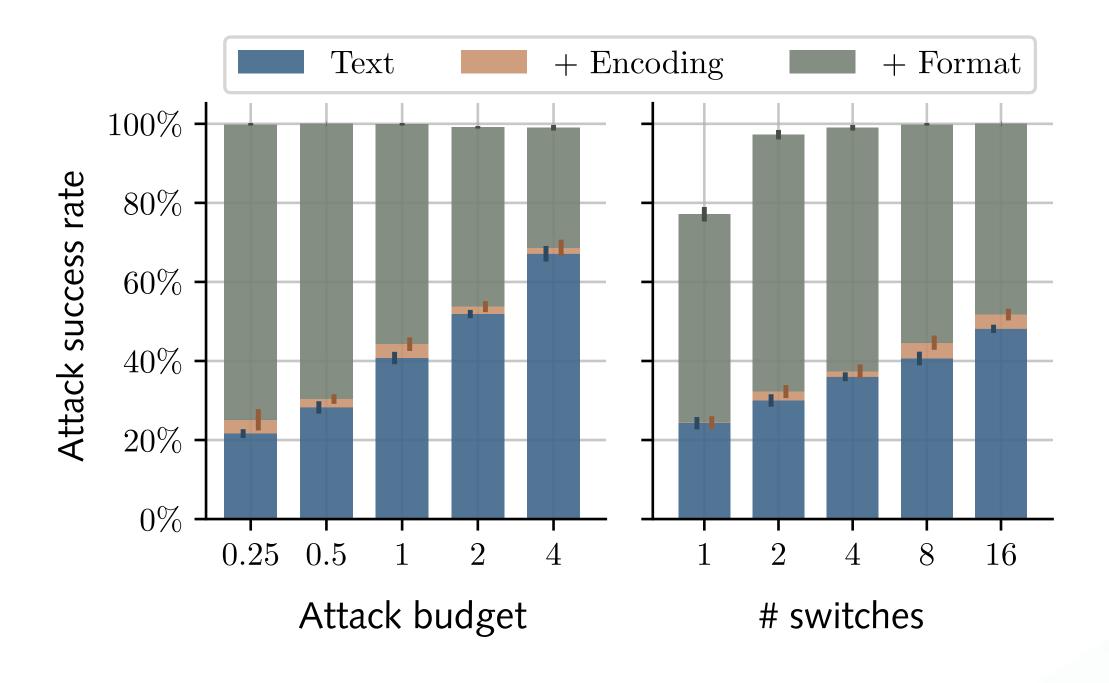
Simulation of IEEE Symposium on Security and Privacy 2020

- PC of 165 reviewers, each represented by 20 of their papers
- 32 real paper submissions with source code from arXiv
- Top-5 ranked reviewers assigned to each submission (no load balancing)
- Two attack scenarios

 - White-box attack: Adversary has direct access to topic model • Black-box attack: Adversary trains own surrogate models

White-Box Scenario

- Experiment: Selection and rejection of reviewers within Top-10
 - Evaluation of attack budget and number of switches

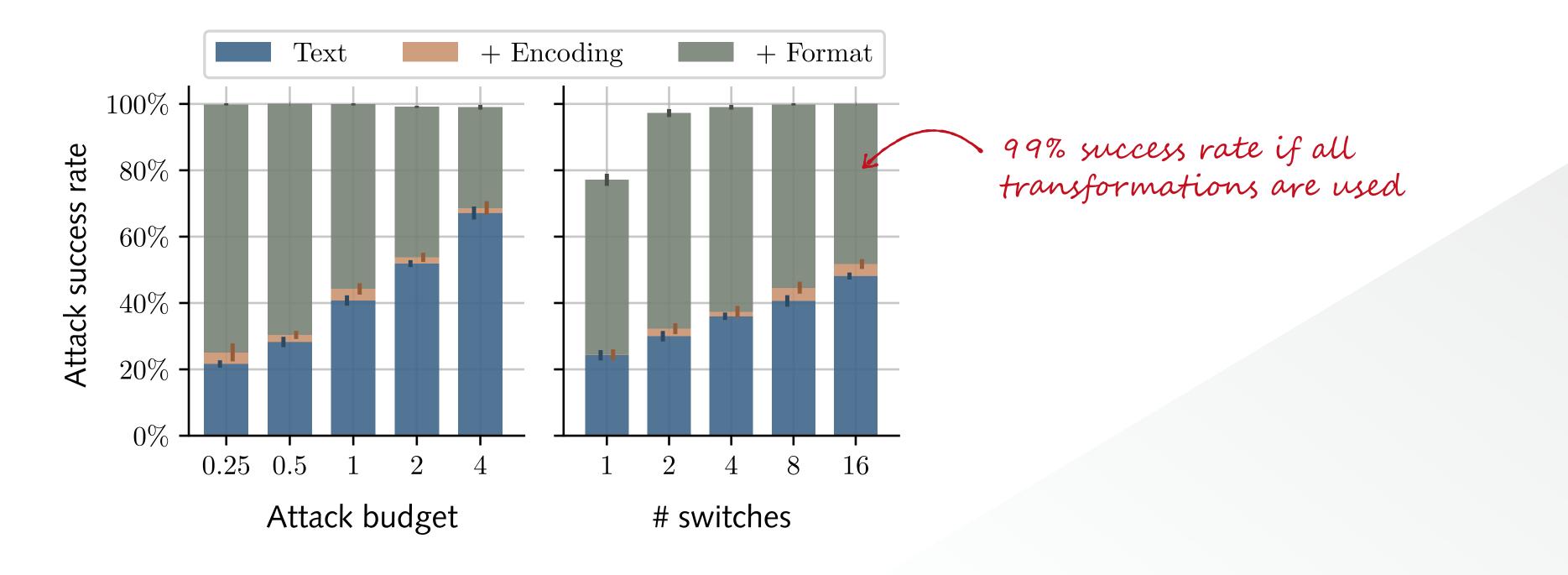


viewers within Top-10 er of switches

Machine Learning and Security

White-Box Scenario

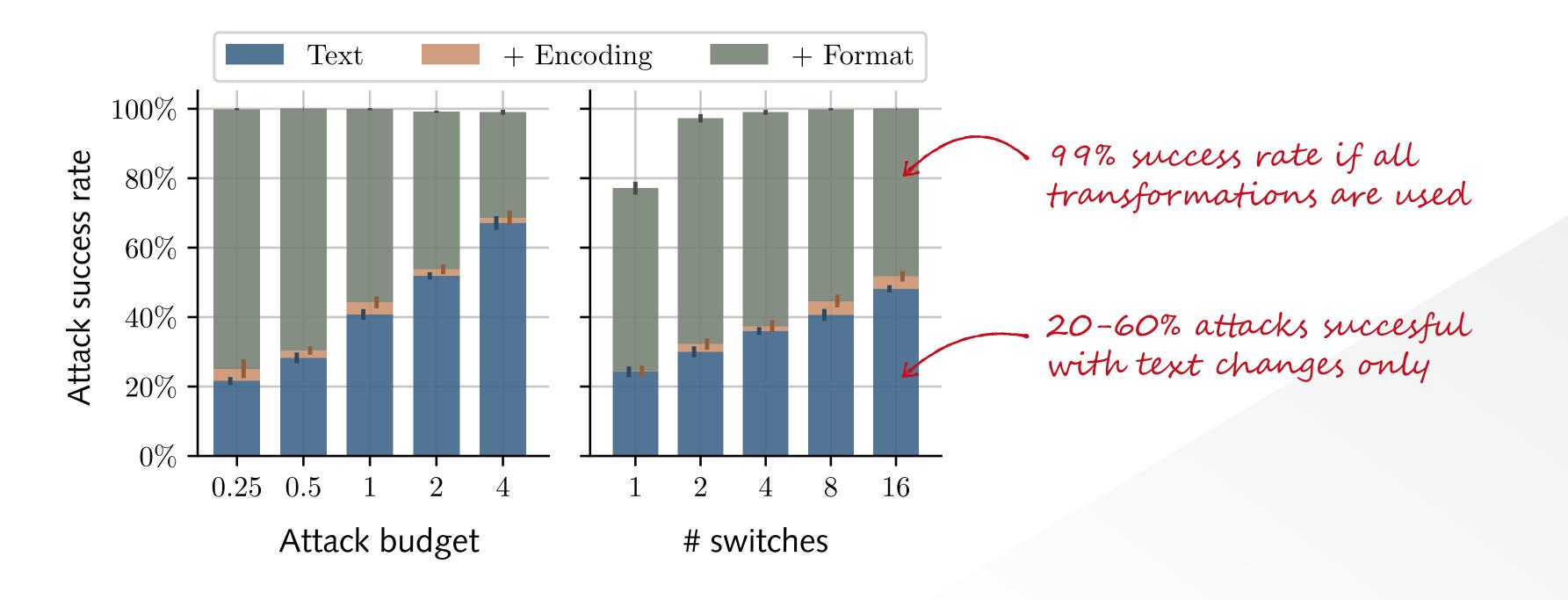
- Experiment: Selection and rejection of reviewers within Top-10
 - Evaluation of attack budget and number of switches



viewers within Top-10 er of switches

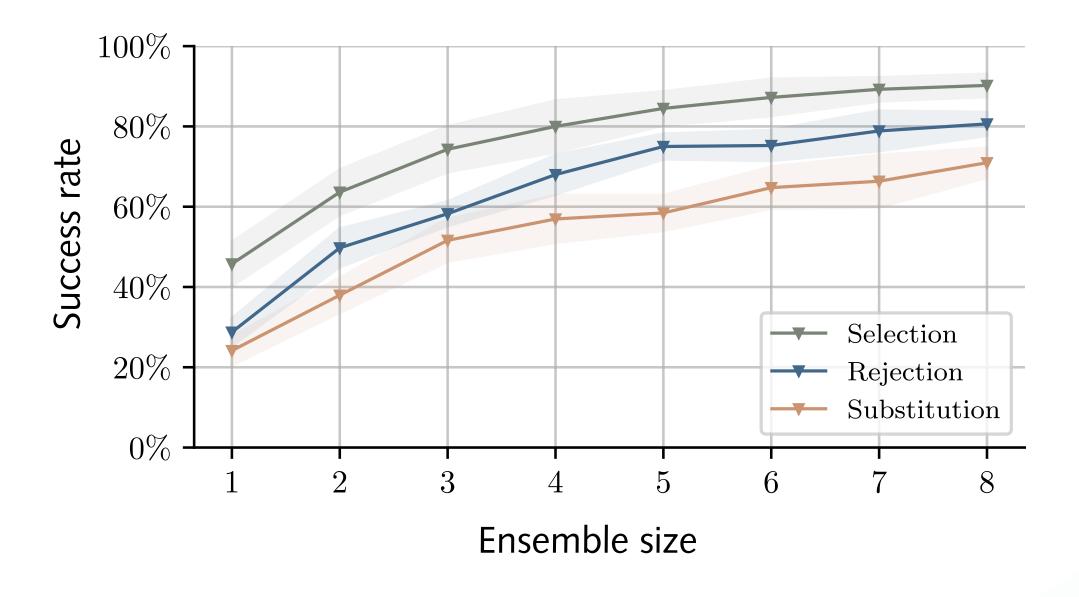
White-Box Scenario

- Experiment: Selection and rejection of reviewers within Top-10
 - Evaluation of attack budget and number of switches

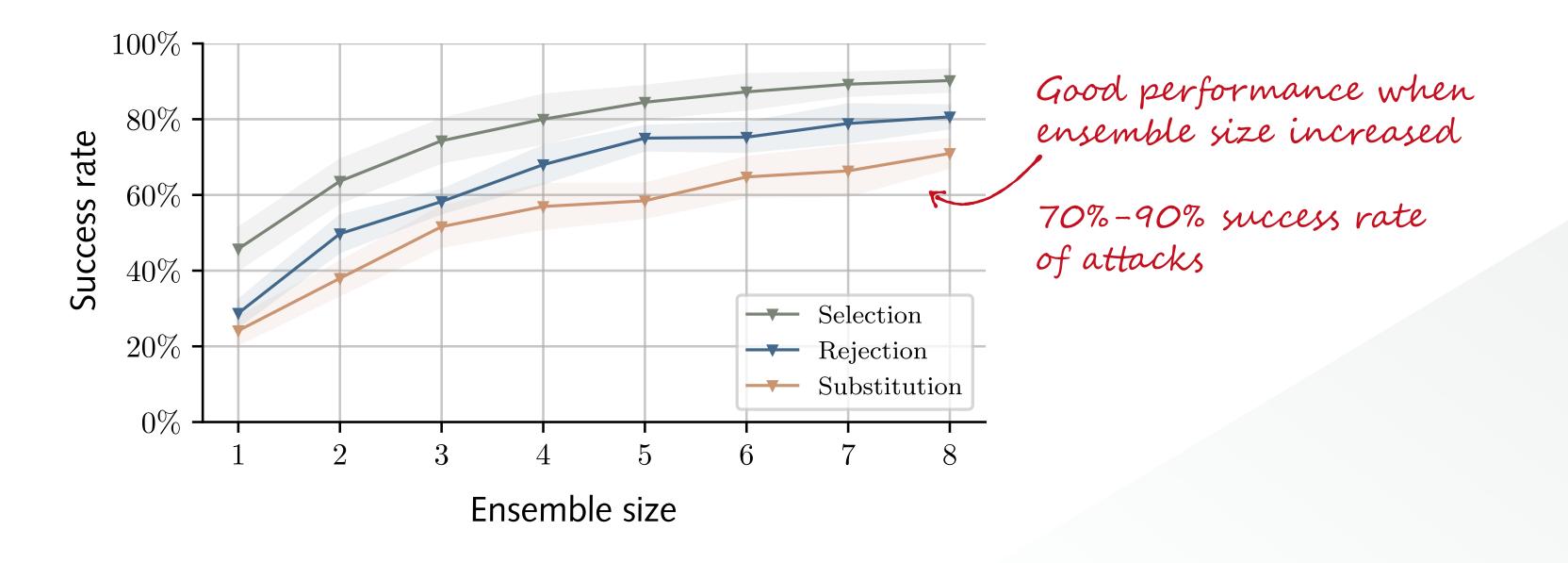


viewers within Top-10 er of switches

- Experiment: Attacks with surrogate models
 - Training of ensemble of surrogate models on 70% of original data
 - Transfer of best attack to topic model of conference system

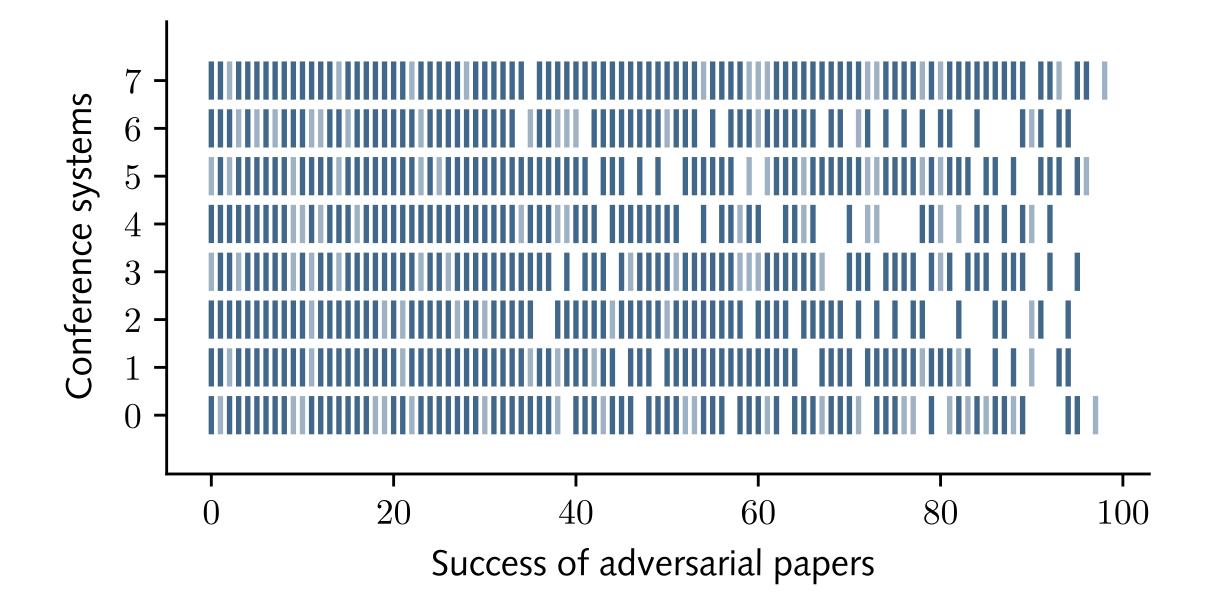


- Experiment: Attacks with surrogate models
 - Training of ensemble of surrogate models on 70% of original data
 - Transfer of best attack to topic model of conference system

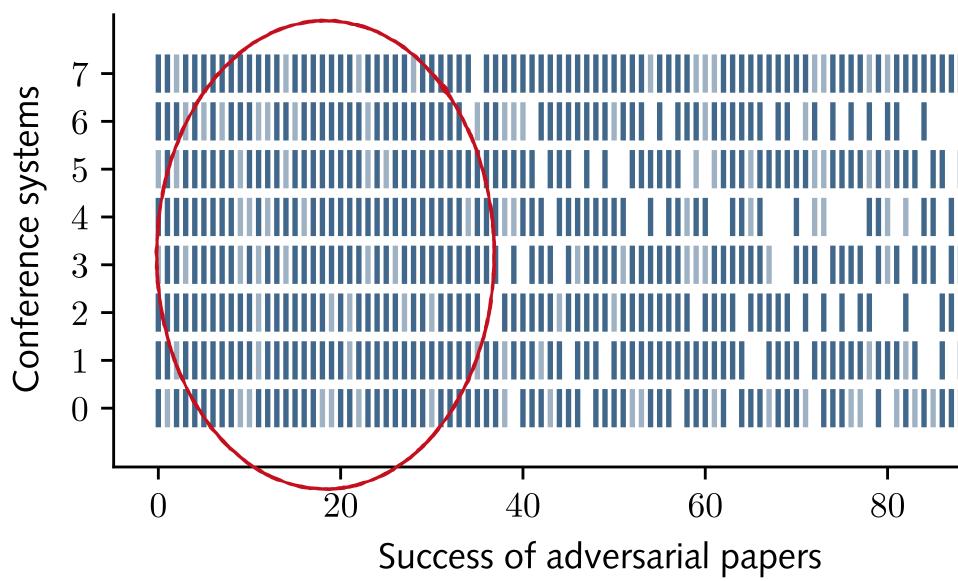


Machine Learning and Securit

- Experiment: Transferability for different conference systems
 - Attacks from 8 surrogate models transfered to conference systems



- Experiment: Transferability for different conference systems
 - Attacks from 8 surrogate models transfered to conference systems



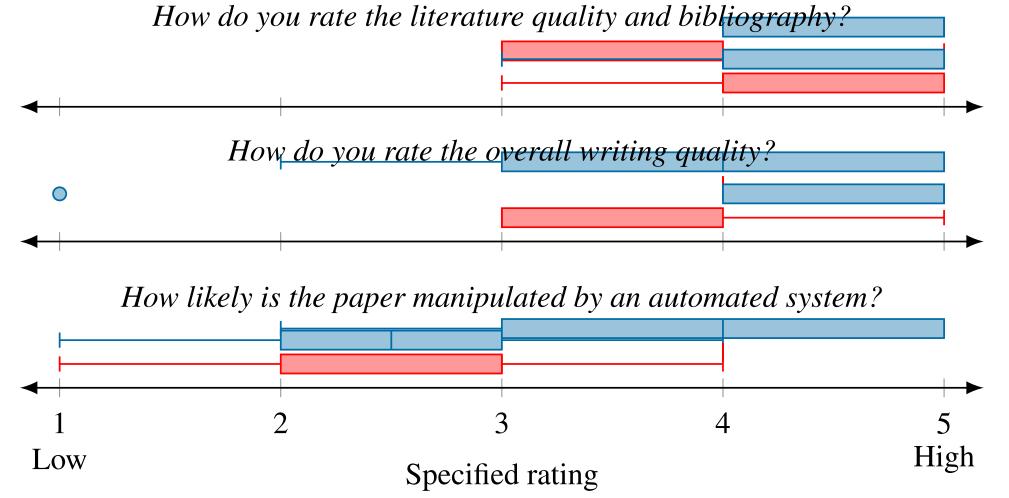
100

34% papers effective against all eight systems

Machine Learning and Securit

Plausibility

- Evaluation of plausibility with small user study
 - 21 security researchers perform runn-reviews on papers
 - Participants asked about quality cf carries and suspiciousness



study wews on papers and suspiciousness

No significant difference observed

> Machine Learning and Security

Slide 28

Aftermath

• Possible defenses

- Sanitization and anomaly detection in PDF files • Prevention of format and encoding tricks with OCR recognition • Defenses against text transformations currently unknown

Notification of TPMS and AutoBid developers

- Positive email exchange No time for defenses currently page
- Is this a threat? Personal take: Yes!

Conclusions

- New attack against automatic reviewer-paper assignment
 - Hybrid attack strategy in feature space and problem space
 - Minimal and unobtrusive transformations of papers
- Broader perspective
 - Decisions based on learning models inherently insecure
 - More to explore off the beaten path of adversarial learning
- More at https://github.com/rub-syssec/adversarial-papers

Thanks! Questions?

Slide 31

