
Scaling Formal Verification to Realistic
Code with Applications to DeFi
Mooly Sagiv

TU WIEN INFORMATICS

DeFi in one slide

● Economic process completely
defined by code

● Fairly complex code
● Examples

■ Landing
■ Exchange
■ Options
■ Auctions

● 50 Billion dollars in the bear market

Interesting DeFi Bugs 2022/3

● Euler Finance $200M - DonateToReserves() function didn’t check for account debt health,
allowing for bad debt to accrue and for the collateral to be liquidated at a large discount to the
attacker

● Yearn Finance V1 $10M - Misconfiguration of one of the underlying asset addresses in the yUSDT
pool allowed an attacker to drain the whole vault

● Safemoon $9M - Upgraded contract didn’t use access control for the burn() function. The
attacker burned tokens from the Safemoon pool on a DEX, inflated the price and sold tokens into
the pool

● Platypus $8.5M - EmergencyWithdraw() didn’t check for debt, so the attacker could take max
loan for his collateral, and then simply emergency withdraw the collateral

● Hundred $7.4M - “First depositor” bug where the attacker could manipulate the exchange rate
and borrow way more than allowed

Why Formally Verify DeFi?

❗ Code is law

💰 Billions of dollars at stake

Σ Code is typically small/modular

🐛 But bugs are hard to find
Happens in rare scenarios

🔄 New code is produced frequently

● Testing & Fuzzing
Random testing on many inputs

● Automatic Formal Verification
Reduce formal verification
to logical constraint solving

Code Security Tools

Enchidn
a Certora

Prover

● Static Analysis
Best effort:

Sound : Over-approximate behavior

Certora Prover

● Proof Assistants Spec ⇒ Code
Correct by design

● Easy to use
● Hard to find (logical) corner cases
● which depend on many events

● Effective proof and bug finding
■ Start at arbitrary state

● Computationally expensive

● False positives & negatives

● Laborious efforts

Competitive Landscape: Code Security

All Bugs

Prover

Traditional
static analysisTesting

Fuzzing

Slither In Action

State Of The Art In Code Quality Tools

Proof Assistants
Ultimately limited by human

Limit programming
Fuzzing &
Static Analysis

Enchidn
a

Certora Prover
• Executable Code
• Easy-to-use specs
• Optional modularity

Se
cu

ri
ty

Automation

The Certora’s Code Security Solution

Technology for checking
bytecode for logical errors

● The Certora Prover:
Automatic formal verification for
bytecode programs

● Gambit: Simplifies CVL writing
● Foresight: Monitoring CVL properties

■ Utilize Certora Prover
■ Scale to all scenarios

CVL a declarative language for
expressing what (not how)
the contract should do

● Application specific

The Certora Prover:
Automatic formal verification

Unknown
Timeout

Invariants

Code

Proofs that the
invariants hold
forever

A hard to find
behavior which
violates the
invariants

Certora Prover

CI Integration
Verification driven development

Invariants

.sol v1

.sol v2Developer

Iterated

Certora Prover

Mitigating SMT complexity

1. Trust but Verify
2. Abstract Interpretation:

Recover types
Memory analysis

Certora Prover Architecture

.SOL
Sol C

.EVM

Decompile

.SPEC
Compile VC generation

.SMT2
SMT Solve

Correctness preserving
transformations

.TAC Analyze

Report

“We thank all contributors who made this release possible.
Special thanks goes to @johnadtoman of @CertoraInc for
reporting the inline assembly memory side effects bug!”

Solidity
@solidity_lang

Bug

Simple Example
Money transfer

CODE
transfer (address from, address to, uint256
amount) {
 require (balances[from] ≥ amount);
 balancesFrom = balances[from] - amount;
 balancesTo = balances[to] + amount;
 balances[from] = balancesFrom;
 balances[to] = balancesTo;
}

TEST
From = “Alice”
To = “Alice”
Amount = 18
old.balances(Alice) = 20
new.balances(Alice) = 38

INVARIANT

total = Σ a: address balances[a]

Certora
Prover

Simple Example
Money transfer

CODE
transfer (address from, address to, uint256
amount) {
 require (balances[from] ≥ amount);
 balancesTo := balances[from] :=
 balances[from]- amount;
 balances[to] := balances[to] + amount;
}

PROOF

Σ a:address old.balances[a]

Σ a:address new.balances[a]

INVARIANT

total = Σ a: address balances[a]

Certora
Prover

Where Does FV Fit In The Development Cycle

Manual Audit

DAPP

Design Code

Verification

Requirement
analysis

Test
program

Check
the spec

Formal
spec

Verification
report

Audit
reports

Deploy / Publish

Executables
+ Artifacts +
Verification reports

Automatic Formal Verification
Finds Catastrophic Failures In Complex Code

Solvency
● If everybody runs to the bank

Bank still fulfills all commitments

Bugs prevented by the Certora-Prover missed in manual audits by top

● Users’ money cannot

be locked or lost

$807M $6.5B $2.7B $1.18B

Strategy 2 V3 1 Comet 5 V2 2

Trident 5 V2 2 V2 5

KashiPair 3

DutchAuction 1

Automatic Formal Verification

1. Good Formal Specifications are hard to find
■ Complete specifications is impossible
■ Specs. which are good for the solver
■ Generic can get some errors

2. Bridging the gap between high level
specifications and low-level code

3. Understanding the verifier results
■ Diagnosability
■ Correctness of spec

4. Code Complexity
■ Modular != Realistic
■ Nonlinear
■ Intercontract
■ Memory & Storage
■ Indirect calls
■ Dynamic loading
■ Unbounded entities
■ Assembly code

5. Mitigating SMT complexity
■ Splitting
■ Over-approximation

and Axiomatisation
■ Learning lemmas
■ Slicing

Good Specifications are hard to find

Solvency: Everybody can get the money in some way

● For every owner o:
● For every asset a deposited by o:

● For every reachable state s in which a was not withdrawn by o yet:
● There exists a scenario starting from s in o can withdraw a

Weaker properties are checked
1. The system has sufficient assets to cover all holding

■ sum deposits >= sum possible withdrawals OR
■ current holdings >= sum obligations

2. Under certain conditions the owner can withdraw

A Four-Year Old Fundamental Bug Detected By
Developer Using Formal Verification

● DAI is a stable coin launched
by MakerDAO in 2019

● 6.5B$ market cap backed
by ~10B$ collateral
May 2022

 Want to read about how we discovered that the foundational״
invariant of the Maker protocol was not, in fact, an invariant using
@CertoraInc tech? Well, today you are in luck:

Kurt Barry
@Kurt_M_Barry

A Four-Year Old Fundamental Bug

● Bug
init function can change the rate of anilk
with an Art greater than zero, breaking
the FEoD function init (bytes32 ilk) external auth {

require(ilks[ilk].rate == 0,
 "Vat/ilk-already-init"):

ilks[ilk].rate = 10 ** 27;
emit Init(ilk);

}

The Critical Burn Bug Prevented

CODE
function burnSingle(address tokenOut, uint256 liquidity, address recipent)
 public lock returns (uint256 amountOut) {
 (uint256 _reserve0, uint256 _reserve1) = _getReserves();
 (uint256 balance0, uint256 balance1) = _getBalances();
 uint256 _totalSupply = totalSupply();

 /* Bug: the amounts computed should be according to the reserve,
 otherwise one can swap for all of the other tokens.
 This bug violates the integrity of totalSupply property */

 //uint256 amount0 = (liquidity * balance0) / _totalSupply;
 //uint256 amount1 = (liquidity * balance1) / _totalSupply;

 uint256 amount0 = (liquidity * _reserve0) / _totalSupply;
 uint256 amount1 = (liquidity * _reserve1) / _totalSupply;

SushiSwap Trident

https://medium.com/certora/exploiting-an-invariant-break-how-we-found-a-pool-draining-bug-in-sushiswaps-trident-585bd98a4d4f

Certora Prover:
Searches For Catastrophic Failures In Complex Code

Bob Alice

Token A > 0 ⬄ Token B > 0

Token A
Token B

= 400
= 0

Alice burns her holdings and
gets 200 token B

certoranews.substack.com |
certora.com

CERTORA PROVER: SEARCHES FOR
CATASTROPHIC FAILURES IN COMPLEX CODE

Token A
Token B

= 400
= 0

Sushi Trident | 2000 lines of Solidity code | 24,547 lines of EVM code | ∞ Behaviors

Alice burns her holdings and
gets 200 token B

Alice burns her holdings and
gets 200 token B

BO
B

ALIC
E

Token A > 0 ⬄ Token B > 0

 Resolved on November 4th,
2021

https://medium.com/certora/exploiting-an-invariant-break-how-we-found-a-pool-draining-bug-in-sushiswaps-trident-585bd98a4d4f

Certora Prover:
Searches For Catastrophic Failures In Complex Code

Token A
Token B

= 0
= 0

Token A
Token B

= 1
= 0

Token A
Token B

= 400
= 200

Token A
Token B

= 400
= 0

Token A > 0 ⬄ Token B > 0 Token A > 0 ⬄ Token B > 0

deposit(Alice, 100A, 100B)

deposit(Bob, 100A, 100B)

transfer(Alice, 200A)

swap(Alice, 1A)

burn_single(Alice)

certoranews.substack.com |
certora.com

CERTORA PROVER: SEARCHES FOR
CATASTROPHIC FAILURES IN COMPLEX CODE

Token A
Token B

= 400
= 200

Token A
Token B

= 0
= 0

Token A
Token B

= 1
= 0

Token A
Token B

= 400
= 0

deposit(Alice, 100A, 100B)

deposit(Bob, 100A, 100B)

transfer(Alice, 200A)

swap(Alice, 1A)

burn_single(Alice)

Token A > 0 ⬄ Token B > 0 Token A > 0 ⬄ Token B > 0

 Resolved on November 4th,
2021

https://medium.com/certora/exploiting-an-invariant-break-how-we-found-a-pool-draining-bug-in-sushiswaps-trident-585bd98a4d4f

Bridging the gap between high level spec
and low level bytecode

ERC20

CODE
uint totalSupply
mapping(address => uint) balanceOf
Rule: sum_ x in address. balanceOf[x] == totalSupply
In spec: G == totalSupply
Hook write balanceOf[key address x] old_value new_value {
G = G-old_value+new_value
}

ERC20

CODE
ghost sumAllFunds() returns mathint {
 init_state axiom sumAllFunds()==0;
}
hook Sstore funds[KEY address a] uint256 balance
// the old value ↓ already there
 (uint256 old_balance) STORAGE {
 havoc sumAllFunds assuming sumAllFunds@new() == sumAllFunds@old() +
 balance - old_balance;
}

CODE
contract Bank {
 mapping (address => uint256) private funds;
 uint256 totalFunds;

ghost sumAllFunds() returns mathint {

 init_state axiom sumAllFunds()==0;

}

hook Sstore funds[KEY address a] uint256 balance

// the old value ↓ already there

 (uint256 old_balance) STORAGE {

 havoc sumAllFunds assuming sumAllFunds@new() == sumAllFunds@old() +

 balance - old_balance;

}

contract Bank {

 mapping (address => uint256) private funds;

 uint256 totalFunds;

Digesting the Prover’s results

What happens when the tool finds a
counterexample to induction?

https://vaas-stg.certora.com/output/23658/34dcbb8636704a8aacaca06c5f42f134?anonymousKey=9644b1158f23354615b3d226ac73d60c11e8cb2a
https://vaas-stg.certora.com/output/23658/34dcbb8636704a8aacaca06c5f42f134?anonymousKey=9644b1158f23354615b3d226ac73d60c11e8cb2a

Overview of counterexample

Detailed trace:
● Pre-state
● Assumption
● Induction step
● Postcondition check

Violated induction step

List of values

invariant integrityOfTotalSupply()
 (totalSupply() == 0 <=> getReserve0() == 0) &&
 (totalSupply() == 0 <=> getReserve1() == 0)

Step 1:
Understand violation

invariant integrityOfTotalSupply()
 (totalSupply() == 0 <=> getReserve0() == 0) &&
 (totalSupply() == 0 <=> getReserve1() == 0)

1. Violated assertion

2. How did this
become zero?

Step 2:
Understand the
change

invariant integrityOfTotalSupply()
 (totalSupply() == 0 <=> getReserve0() == 0) &&
 (totalSupply() == 0 <=> getReserve1() == 0)

1. Burning 5 out of 0x143e
tokens for only token1

2. How can one get all the
reserve?

Step 3: Understand pre-state and code

1. Token0 balance of the
system >> reserve0

2. Amount out is computed
in terms of balance
But swapping token0 to
token1 is in terms of
reserve

What happens when the tool successfully
verifies the code?

Tautological rule example - Notional

The white hat who reported the bug will receive $1 million USD and
a 100,000 NOTE bonus for their efforts and our bounty program
will continue.

Notional
@NotionalFinance

Tautological rule example - Notional

An asset cannot be both bitmap and active

Tautological rule example - Notional

An asset cannot be both bitmap and active

Tautological rule example - Notional

If the bitmap currency is not zero, and the active currency is zero, then
the bitmap and active currencies are different

Tautological rule example - Notional

Same tautological statement 0000000000000000
Masked

Unmasked

Less is more

CODE
invariant bitmapCurrencyIsNotDuplicatedInActiveCurrencies(
address account, uint144 j
)
0 <= i && i < 9
&& getActiveUnmasked (account, i) != 0 && hasCurrencyMask (account, i)
=> getActiveUnmasked (account, i) !=
getBitmapCurrency (account)

The simpler rule catches the bug

https://vaas-stg.certora.com/output/43260/839ecb426915da2567dd/?anonymousKey=25847f026ad5a098eba6cf2df7d57e2c94677988

 Mutating Testing for Improving Spec(Chandra Nandi)

Proxy for spec quality:
no overlapping behavior

Properties

Mutants

Mutants that fail
verification

Mutants that pass
verification

Gambit: Mutating Testing for Improving Spec

Mutants that failed
verification

Mutants that passed
verification

Proxy for spec quality:
no overlapping behavior

Mutants

Properties

UNSAT Core

● For Unsat formulas SMT solver generates a minimal Unsat subset of clauses
● Generalizes tautology and vacuity checking
● Utilized to check specs
● Low level code is a challenge

UNSAT Cores - Mapping CVL -> TAC

rule tautology(uint256 fundId, method f) {

address manager = getCurrentManager(fundId);

address other;

require other != manager;

env e;

calldataarg args;

f(e,args);

address newManager = getCurrentManager(fundId);

assert (newManager!= other

|| newManager != manager);

}

manager800 = R32 (result of getCurrentManager)
tacTmp809 = other807
tacTmp810 = R32
B55 = !(tacTmp809==tacTmp810)
assume B55
……
::Invoke f args :3::
newManager826 = R49 (result of getCurrentManager)
tacTmp834 = R49
tacTmp835 = other807
tacTmp833 = !(tacTmp834==tacTmp835)
tacTmp837 = R49
tacTmp838 = R32
tacTmp836 = !(tacTmp837==tacTmp838)
certoraAssert_1 = tacTmp833||tacTmp836
assert certoraAssert_1

CVL TAC

UNSAT Cores - Mapping CVL -> TAC

rule tautology(uint256 fundId, method f) {

address manager = getCurrentManager(fundId);

address other;

require other != manager;

env e;

calldataarg args;

f(e,args);

address newManager = getCurrentManager(fundId);

assert (newManager!= other

|| newManager != manager);

}

manager800 = R32 (result of getCurrentManager)
tacTmp809 = other807
tacTmp810 = R32
B55 = !(tacTmp809==tacTmp810)
assume B55
……
::Invoke f args :3::
newManager826 = R49 (result of getCurrentManager)
tacTmp834 = R49
tacTmp835 = other807
tacTmp833 = !(tacTmp834==tacTmp835)
tacTmp837 = R49
tacTmp838 = R32
tacTmp836 = !(tacTmp837==tacTmp838)
certoraAssert_1 = tacTmp833||tacTmp836
assert certoraAssert_1

CVL TAC

UNSAT Cores - Mapping TAC -> SMT

manager800 = R32 (result of getCurrentManager)
tacTmp809 = other807
tacTmp810 = R32
B55 = !(tacTmp809==tacTmp810)
assume B55
……
::Invoke f args :3::
newManager826 = R49 (result of getCurrentManager)
tacTmp834 = R49
tacTmp835 = other807
tacTmp833 = !(tacTmp834==tacTmp835)
tacTmp837 = R49
tacTmp838 = R32
tacTmp836 = !(tacTmp837==tacTmp838)
certoraAssert_1 = tacTmp833||tacTmp836
assert certoraAssert_1

(set-logic QF_UFDTLIA)
……
……
(assert … (= manager800 R32) …)
(assert … (= tacTmp809 = other807) …)
(assert … (= tacTmp810 = R32) …)
(assert … (= B55 (not (= tacTmp809 tacTmp810) …)
(assert … B55 …)
……
(assert …encoding of Invoke f …)
(assert … (= newManager826 R49) …)
(assert … (= tacTmp834 R49) …)
(assert … (= tacTmp835 other807) …)
(assert … (= tacTmp833 (not (= tacTmp834 tacTmp835))) …)
(assert … (= tacTmp837 = R49) …)
(assert … (= tacTmp838 = R32) …)
(assert … (= tacTmp836 (not (= tacTmp837 tacTmp838))) …)
(assert … (= certoraAssert_1 (or tacTmp833 tacTmp836)) …)
(assert … certoraAssert_1)
……
(check-sat)
(get-unsat-core)

TAC SMT

UNSAT Cores - Mapping TAC -> SMT

manager800 = R32 (result of getCurrentManager)
tacTmp809 = other807
tacTmp810 = R32
B55 = !(tacTmp809==tacTmp810)
assume B55
……
::Invoke f args :3::
newManager826 = R49 (result of getCurrentManager)
tacTmp834 = R49
tacTmp835 = other807
tacTmp833 = !(tacTmp834==tacTmp835)
tacTmp837 = R49
tacTmp838 = R32
tacTmp836 = !(tacTmp837==tacTmp838)
certoraAssert_1 = tacTmp833||tacTmp836
assert certoraAssert_1

(set-logic QF_UFDTLIA)
……
……
(assert … (= manager800 R32) …)
(assert … (= tacTmp809 = other807) …)
(assert … (= tacTmp810 = R32) …)
(assert … (= B55 (not (= tacTmp809 tacTmp810) …)
(assert … B55 …)
……
(assert …encoding of Invoke f …)
(assert … (= newManager826 R49) …)
(assert … (= tacTmp834 R49) …)
(assert … (= tacTmp835 other807) …)
(assert … (= tacTmp833 (not (= tacTmp834 tacTmp835))) …)
(assert … (= tacTmp837 = R49) …)
(assert … (= tacTmp838 = R32) …)
(assert … (= tacTmp836 (not (= tacTmp837 tacTmp838))) …)
(assert … (= certoraAssert_1 (or tacTmp833 tacTmp836)) …)
(assert … certoraAssert_1)
……
(check-sat)
(get-unsat-core)

TAC SMT

UNSAT Cores - SMT Solving

(set-logic QF_UFDTLIA)
……
……
(assert … (= manager800 R32) …)
(assert … (= tacTmp809 = other807) …)
(assert … (= tacTmp810 = R32) …)
(assert … (= B55 (not (= tacTmp809 tacTmp810) …)
(assert … B55 …)
……
(assert …encoding of Invoke f …)
(assert … (= newManager826 R49) …)
(assert … (= tacTmp834 R49) …)
(assert … (= tacTmp835 other807) …)
(assert … (= tacTmp833 (not (= tacTmp834 tacTmp835))) …)
(assert … (= tacTmp837 = R49) …)
(assert … (= tacTmp838 = R32) …)
(assert … (= tacTmp836 (not (= tacTmp837 tacTmp838))) …)
(assert … (= certoraAssert_1 (or tacTmp833 tacTmp836)) …)
(assert … certoraAssert_1 …)
……
(check-sat)
(get-unsat-core)

SMT

UNSAT Cores - SMT Solving

(set-logic QF_UFDTLIA)
……
……
(assert … (= manager800 R32) …)
(assert … (= tacTmp809 = other807) …)
(assert … (= tacTmp810 = R32) …)
(assert … (= B55 (not (= tacTmp809 tacTmp810) …)
(assert … B55 …)
……
(assert …encoding of Invoke f …)
(assert … (= newManager826 R49) …)
(assert … (= tacTmp834 R49) …)
(assert … (= tacTmp835 other807) …)
(assert … (= tacTmp833 (not (= tacTmp834 tacTmp835))) …)
(assert … (= tacTmp837 = R49) …)
(assert … (= tacTmp838 = R32) …)
(assert … (= tacTmp836 (not (= tacTmp837 tacTmp838))) …)
(assert … (= certoraAssert_1 (or tacTmp833 tacTmp836)) …)
(assert … certoraAssert_1 …)
……
(check-sat)
(get-unsat-core)

UNSAT

SMT

UNSAT Cores - SMT Solving

(set-logic QF_UFDTLIA)
……
……
(assert … (= manager800 R32) …)
(assert … (= tacTmp809 = other807) …)
(assert … (= tacTmp810 = R32) …)
(assert … (= B55 (not (= tacTmp809 tacTmp810) …)
(assert … B55 …)
……
(assert …encoding of Invoke f …)
(assert … (= newManager826 R49) …)
(assert … (= tacTmp834 R49) …)
(assert … (= tacTmp835 other807) …)
(assert … (= tacTmp833 (not (= tacTmp834 tacTmp835))) …)
(assert … (= tacTmp837 = R49) …)
(assert … (= tacTmp838 = R32) …)
(assert … (= tacTmp836 (not (= tacTmp837 tacTmp838))) …)
(assert … (= certoraAssert_1 (or tacTmp833 tacTmp836)) …)
(assert … certoraAssert_1 …)
……
(check-sat)
(get-unsat-core)

UNSAT CORE

SMT

UNSAT Cores - BackMapping CVL <- TAC <- SMT

(set-logic QF_UFDTLIA)
……
……
(assert … (= manager800 R32) …)
(assert … (= tacTmp809 = other807) …)
(assert … (= tacTmp810 = R32) …)
(assert … (= B55 (not (= tacTmp809 tacTmp810) …)
(assert … B55 …)
……
(assert …encoding of Invoke f …)
(assert … (= newManager826 R49) …)
(assert … (= tacTmp834 R49) …)
(assert … (= tacTmp835 other807) …)
(assert … (= tacTmp833 (not (= tacTmp834 tacTmp835))) …)
(assert … (= tacTmp837 = R49) …)
(assert … (= tacTmp838 = R32) …)
(assert … (= tacTmp836 (not (= tacTmp837 tacTmp838))) …)
(assert … (= certoraAssert_1 (or tacTmp833 tacTmp836)) …)
(assert … certoraAssert_1 …)
……
(check-sat)
(get-unsat-core)

UNSAT CORE

rule tautology(uint256 fundId, method f) {

address manager = getCurrentManager(fundId);

address other;

require other != manager;

env e;

calldataarg args;

f(e,args);

address newManager = getCurrentManager(fundId);

assert (newManager!= other

|| newManager != manager);

}

SMT CVL

rule tautology(uint256 fundId, method f) {

address manager = getCurrentManager(fundId);

address other;

require other != manager;

env e;

calldataarg args;

f(e,args);

address newManager = getCurrentManager(fundId);

assert (newManager!= other

|| newManager != manager);

}

UNSAT Cores - Vacuous Spec
CVL

rule tautology(uint256 fundId, method f) {

address manager = getCurrentManager(fundId);

address other;

require other != manager;

env e;

calldataarg args;

f(e,args);

address newManager = getCurrentManager(fundId);

assert (newManager!= other

|| newManager != manager);

}

UNSAT Cores - Vacuous Spec

Irrelevant function calls and variable
assignments!!!

CVL

Mitigating SMT Complexity

Splitting

Splitting
Experimental Evaluation

Custom Over Approximation and Axiomatisation
Basic Encodings

- Precise Nonlinear Integer Arithmetic (NIA)
- Over-approximating Linear Integer Arithmetic (LIA)
- We run a portfolio of LIA and NIA encodings with many solvers in parallel

Example LIA Multiplication Axiomatisation
a∗b modelled with an uninterpreted function a∙b with axioms:

Domain Specific Overflow Axiom Example

(a>0 && b>0) => ((a*b % 2^256)/a == b <=> a*b < 2^256)

To verify: no overflow
(2^256 -1 = max uint)

Equivality hint for the solverAssumption from the program

a∙0 = 0
a∙b = b∙a

a > 0, b > 0 ⟹ a∙b > 0
a > 0, b < 0 ⟹ a∙b < 0

a > 0, b > 0 ⟹ a∙b ≥ a, a∙b ≥ b
…and many other

LIA + NIA Portfolio
Experimental Evaluation

Learned Lemmas Sharing

Given a formula F, an SMT solver says:

● F is SAT, or
● F is UNSAT, or
● Timeout, but learned F => L for some L

Example
L ≡ (x = 5) ∧
 (y <= 10 ∨ y > 20) ∧
 (y < 100) ∧
 (z = x ∨ z > 10)

solving time

Grounding Quantifiers (Basic Idea)

Let “assume forall x. f(x) = 0” appear in the verification condition (VC)

Natural SMT Encoding

- via universal quantification

Our Encoding

- Collect all instances of f appearing in the VC, say f(1), f(x), f(y + 2)
- Replace assume forall x. f(x) = 0 in the VC with:

- assume f(1) = 0
- assume f(x) = 0
- assume f(y + 2) = 0

AI & SMT better together
● Memory in EVM is a monolithic array of bytes
● SMT must infer facts about non-aliasing
● Certora Prover performs a pre-processing of bytecode

■ Ensure non-interference between accesses to memory regions
■ Resolve external function calls which improves precision
■ Simplify the SMT formulae, lowers burden on solvers

No Analysis (imprecise) No mem-splitting rewrites (slow)

149/5348 tasks had spurious counterexamples upto 42 min slowdown in SMT solving time

e.g., due to complex / too many
read-over-write axioms

unresolved external function calls
treated as “havocs”

Take Away
1. Formal verification is useful for DeFi

a. Developers and security researchers can write specifications
b. Code is law
c. Ratio of lines per $$$
d. Code is tricky
e. Bugs have huge costs
f. Security budget is high

2. But more is needed
a. Specifications
b. Static Analysis
c. SMT
d. Programming Language design

3. Certora takes a first step

More Take Away(Jaroslav Bendik)
1. LIA is sometimes good over-approximation for NIA

a. The program contains non-linear but the specs do not

2. Unsat-cores are key to spec quality checking
3. Array theory & bitvectors drastically complicate reasoning
4. Most interesting specs initially time-out

a. Sometimes solved with user provided summaries
b. Abstract interpretation is a key

5. Domain specific axioms can make SMT faster
a. Overflow checking

6. Memory analysis is key
a. Eliminate low level storage

Myths And Reality About Formal Verification

Myths

● FV can only prove absence of bugs

● Hardest problem is computational

● FV produces bullet-proof code

● FV replaces auditing

● FV comes last as a one-time deal

Reality

● Biggest value of FV is finding bugs

● Hardest problem is specification

● FV drastically improves code security

● FV improves auditing

● FV comes first and guarantees
code upgrade safety

Conclusion

Bug finding is hard

● Auditing is good but not enough
● Fuzzing from initial state until….

Static analysis and SMT better together

● Static analysis reduces SMT complexity
● SMT eliminates false alarms by static analysis

Automatic Formal Verification

● Arbitrary state
● Finds tricky bugs
● Proves high level properties

of low level code
● Arbitrary programming style

