TU WIEN INFORMATICS

Scaling Formal Verification to Realistic
Code with Applications to DeFi

Mooly Sagiv

@ certora @O@
TEL AVIV UNIVERSITY

DeFi in one slide

Economic process completely
defined by code
Fairly complex code
Examples
Landing
Exchange
Options
Auctions
50 Billion dollars in the bear market

Total TVL

$48.24b -117%

Jun

2020

Jun

2021

Jun

2022

Jun

$240b

$200b

$160b

$120b

$80b

| SN e - $48.24b

2023

~
R~

Interesting DeFi Bugs 2022/3

e Euler Finance $200M - DonateToReserves() function didn't check for account debt health,
allowing for bad debt to accrue and for the collateral to be liquidated at a large discount to the
attacker

e Yearn Finance V1 $10M - Misconfiguration of one of the underlying asset addresses in the yUSDT
pool allowed an attacker to drain the whole vault

e Safemoon $9M - Upgraded contract didn’t use access control for the burn() function. The
attacker burned tokens from the Safemoon pool on a DEX, inflated the price and sold tokens into
the pool

e Platypus $8.5M - EmergencyWithdraw() didn't check for debt, so the attacker could take max
loan for his collateral, and then simply emergency withdraw the collateral

e Hundred $7.4M - “First depositor” bug where the attacker could manipulate the exchange rate
and borrow way more than allowed

@ certora

Why Formally Verify DeFi?

Code is law

$ Billions of dollars at stake

2. Codeis typically small/modular

But bugs are hard to find
Happens in rare scenarios

iz New code is produced frequently

@ certora

£) Maker
@MakerDAO

UPDATE ON MULTI-COLLATERAL DAI:

The code is ready and formally verified. The first time ever
amajor dapp has been formally verified.

Learn more: medium.com/makerdao/the-c...
#FormalVerification #DAI $DAI $SMKR #MKR

12:07 AM - Sep 18, 2018

A\ Lido
¥. @LidoFinance

The Lido-on-Ethereum protocol team is doing all it can to
make sure the protocol upgrade is secure and issue-free,
including conducting thorough security audits, performing
formal verification, and extensively testing on Goerli.

9:01PM - Feb 28,2023 - 1,951 Views

Code Security Tools

Testing & Fuzzing

Automatic Formal Verification

e FEasytouse
Hard to find (logical) corner cases
e which depend on many events

Effective proof and bug finding
m Start at arbitrary state
Computationally expensive

Static Analysis

e False positives & negatives

Proof Assistants Spec = Code

Laborious efforts

Competitive Landscape: Code Security
/

ri‘g certora Prover

A

Traditional
static analysis

Testing
Fuzzing

All Bugs

s

SLITHER

RN |

foundry

Slither In Action

0N

i

certora

uri@MacBook-Pro-7 Bank % slither . --solc solc4.25

Compilation warnings/errors on ./Bank.sol:

./Bank.sol:1:1: Warning: Source file does not specify required compiler version!Consider
contract Bank {

“ (Relevant source part starts here and spans across multiple lines).
./Bank.sol:26:2: Warning: Function state mutability can be restricted to view
function getfunds(address account) public returns (uint256) {

“ (Relevant source part starts here and spans across multiple lines).

./Bank.sol:31:2: Warning: Function state mutability can be restricted to view
function ercBalance() public returns (uint256) {

* (Relevant source part starts here and spans across multiple lines).

./Bank.sol:34:2: Warning: Function state mutability can be restricted to pure
function init_state() public {}

IS ~

Bank (Bank.sol#1-37) has incorrect ERC20 function interface:Bank.transfer(address,uint256
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-erc20-

solc-0.4.25 is not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versic

Function Bank.init_state() (Bank.sol#34) is not in mixedCase
Reference: https://github.com/crytic/slither/wiki/Detector ation#confor to-s

deposit(uint256) should be declared external:

- Bank.deposit(uint256) (Bank.sol#4-6)
transfer(address,uint256) should be declared external:

- Bank.transfer(address,uint256) (Bank.sol#8-12)
withdraw() should be declared external:

- Bank.withdraw() (Bank.sol#14-18)
withdraw(uint256) should be declared external:

- Bank.withdraw(uint256) (Bank.sol#20-24)
getfunds (address) should be declared external:

- Bank.getfunds(address) (Bank.sol#26-28)
ercBalance() should be declared external:

- Bank.ercBalance() (Bank.sol#31-33)

Security

State Of The Art In Code Quality Tools
& certora

Certora Prover
+ Executable Code

+ Easy-to-use specs
+ Optional modularity

]

) . CONSENSYS =S EE v
& Enchidn SLITHER

Automation

The & Certora’s Code Security Solution

Technology for checking CVL a declarative language for
bytecode for logical errors expressing what (not how)

the contract should do

The Certora Prover:
Automatic formal verification for
bytecode programs
Gambit: Simplifies CVL writing
Foresight: Monitoring CVL properties

Utilize Certora Prover

Scale to all scenarios

Application specific

@ certora

The Certora Prover:
Automatic formal verification

‘ Proofs that the
— invariants hold

. forever

Invariants I

Unknown
Timeout

>
Code Certora Prover o A hard to find
@ behavior which
N violates the
invariants

Cl Integration
Verification driven development

>

Invariants

>
.sol vl Certora Prover

)

Developer

Iterated

Certora Prover Architecture

SOL

>
.SPEC

Sol C

[
™~

.EVM

Compile

Decompile

Mitigating SMT complexity

VC generation

Correctness preserving
transformations

Trust but Verify
Abstract Interpretation:
Recover types

Memory analysis

[— l\ /J
- —— SMT Solve |— [O] —— Analyze
SMT2 Bug

Q Solidity
‘ @solidity lang

“We thank all contributors who made this release possible.
Special thanks goes to @johnadtoman of @Certoralnc for
reporting the inline assembly memory side effects bug!”

Simple Example
Money transfer

<>

CODE

transfer (address from, address to, uint256

amount) {
require (balances[from] 2 amount);
balancesFrom = balances[from] - amount;
balancesTo = balances[to] + amount;
balances[from] = balancesFrom;
balances[to] = balancesTo;

3
<>
INVARTANT
@ certora
total =

z

Certora

2

TEST

From = “Alice”

To = “Alice”

Amount = 18
old.balances(Alice)

Prover new.balances(Alice)

a: address

balances[a]

20
38

Simple Example
Money transfer

<>

CODE
transfer (address from, address to, uint256
amount) {

require (balances[from] 2 amount);

balancesTo := balances[from] :=
balances[from]- amount;
balances[to] := balances[to] + amount;
3
<2
INVARIANT
& certora
total =

z

<D
PROOF
z a:address
Certora z a:address
Prover
a:‘_mdh_ﬂessbalances[aj

old.balances[a]

new.balances[a]

Where Does FV Fit In The Development Cycle

Manual Audit

Audit
reports

f

Design

Test
program

Verification
report

Requirement
analysis

Check
the spec

Deploy / Publish

certora

Automatic Formal Verification
Finds Catastrophic Failures In Complex Code

Solvency
If everybody runs to the bank Users’ money cannot
Bank still fulfills all commitments be locked or lost

Bugs prevented by the Certora-Prover missed in manual audits by top

& Sushiswap $807M AAVE $6.5B &) Compound $2.7B & Balancer
Strategy 2 V3 1 Comet 5 V2

Trident 5 V2 2 V2 5

KashiPair 3

DutchAuction 1

@ certora

$1.18B

Automatic Formal Verification

1. Good Formal Specifications are hard to find
Complete specifications is impossible
Specs. which are good for the solver
Generic can get some errors

2. Bridging the gap between high level

specifications and low-level code

3. Understanding the verifier results
Diagnosability
Correctness of spec

@ certora

Code Complexity

Modular != Realistic
Nonlinear
Intercontract
Memory & Storage
Indirect calls
Dynamic loading
Unbounded entities
Assembly code

Mitigating SMT complexity

Splitting
Over-approximation
and Axiomatisation
Learning lemmas
Slicing

Good Specifications are hard to find

Solvency: Everybody can get the money in some way

For every owner o:
For every asset a deposited by o:
For every reachable state s in which a was not withdrawn by o yet:
There exists a scenario starting from s in o can withdraw a

Weaker properties are checked
1. The system has sufficient assets to cover all holding
sum deposits >= sum possible withdrawals OR
current holdings >= sum obligations
2. Under certain conditions the owner can withdraw

@ certora

A Four-Year Old Fundamental Bug Detected By
Developer Using Formal Verification

DAl is a stable coin launched
by MakerDAOQO in 2019

Kurt Barry
@Kurt_M_Barry

“Want to read about how we discovered that the foundational

65B$ market Cap baCked invariant of the Maker protocol was not, in fact, an invariant using
~ @Certoralnc tech? Well, today you are in luck:
y collatera
May 2022
hackmd.io
Eb When Invariants Aren't: DAl's Certora Surprise - H...
When Invariants Aren't: DAIl's Certora Surprise

Authors: [Kurt Barry](https://twitter.com/Kurt_M_B

@ certora

A Four-Year Old Fundamental Bug

Bug

init function can change the rate of anilk

with an Art greater than zero, breaking

the FEoD function init (bytes32 ilk) external auth {
require(ilks[ilk].rate ==
"Vat/ilk-already-init"):

Mat-debt—Vatovice——>— Vatillsli-Art—Vatilkslidrate ilks[ilk].rate = 10 ** 27;

i emit Init(ilk);

<>

The Critical Burn Bug Prevented

<D SushiSwap Trident

CODE

function burnSingle(address tokenOut, uint256 liquidity, address recipent)
public lock returns (uint256 amountOut) {
(uint256 _reserved, uint256 _reservel) = _getReserves();

(uint256 balance@, uint256 balancel) = _getBalances();
uint256 _totalSupply = totalSupply();

/* Bug: the amounts computed should be according to the reserve,
otherwise one can swap for all of the other tokens.
This bug violates the integrity of totalSupply property */

//uint256 amount©®
//uint256 amountl

(liquidity * balance@®) / _totalSupply;
(ligquidity * balancel) / _totalSupply;

uint256 amount©
uint256 amountl

(liquidity * _reserve@) / _totalSupply;
(liquidity * _reservel) / _totalSupply;

https://medium.com/certora/exploiting-an-invariant-break-how-we-found-a-pool-draining-bug-in-sushiswaps-trident-585bd98a4d4f

Certora Prover:

Searches For Catastrophic Failures In Complex Code

Bob

Token A = 400
TokenB = O

Alice burns her holdings and
gets 200 token B

CERTORA PROVER: SEARCHES FOR @
CATASTROPHIC FAILURES IN COMPLEX CODE

Sushi Trident | 2000 lines of Solidity code | 24,547 lines of EVM code | Behaviors

—FelkerrA—-0—=—FekernB->0—
Alice burns her holdings and [1
_ | gets 200 token B i
I

BO ALIC
B E

Token A =

TokenB =0

CRdaiRh SHIGes YRStk .com |
2edtora.com

https://medium.com/certora/exploiting-an-invariant-break-how-we-found-a-pool-draining-bug-in-sushiswaps-trident-585bd98a4d4f

Certora Prover:

Searches For Catastrophic Failures In Complex Code

— deposit(Alice, 100A, 100B)

E— deposit(Bob, 100A, 100B)

— transfer(Alice, 200A)

Token A
Token B

— swap(Alice,1A) [—>

-—

& certora Token A
Token B

— burn_single(Alice) >
Token A = 400 Token A = 400
Token B = 200 TokenB = O
Token A>0O <= TokenB>O FokenA>-0—=—FokenB—>0O

CERTORA PROVER: SEARCHES FOR
CATASTROPHIC FAILURES IN COMPLEX CODE

Token A>0 <« TokenB=0

0]

deposit(Alice, 100A,100B) —>

deposit(Bob,100A,100B) ——>

transfer(Alice, 200A) —————>

Token A = 0
TokenB = 0

Token A = 400 Token A = 400
Token B = 200 TokenB = 0

(=]
L]

— swap(Alice,1A) —>

Token A =1
coekarRasMIGeSHRSIARK.cOM | 10 Ch D T

2edttora.com

https://medium.com/certora/exploiting-an-invariant-break-how-we-found-a-pool-draining-bug-in-sushiswaps-trident-585bd98a4d4f

Bridging the gap between high level spec
and low level bytecode

ERC20

<>

CODE

uint totalSupply

mapping(address => uint) balanceOf

Rule: sum_ x in address. balanceOf[x] == totalSupply

In spec: G == totalSupply

Hook write balanceOf[key address x] old_value new_value {
G = G-old_valuetnew_value

3

ERC20

<>

<D CODE
contract Bank {
mapping (address => uint256) private funds;
CODE uint256 totalFunds;

ghost sumAllFunds() returns mathint {
init_state axiom sumAllFunds()==0;
3
hook Sstore funds[KEY address a] uint256 balance
// the old value |, already there
(uint256 old_balance) STORAGE {
havoc sumAllFunds assuming sumAllFunds@new() == sumAllFunds@old() +
balance - old_balance;

@ certora

ghost sumAllFunds() returns mathint { contract Bank {

init_state axiom sumAllFunds()==0; mapping (address => uint256) private funds;

uint256 totalFunds;

hook Sstore funds[KEY address a] uint256 balance
/ the old value | already there
(uint256 old_balance) STORAGE {
havoc sumAllFunds assuming sumAllFunds@new() == sumAllFunds@old() +
balance - old_balance;

Digesting the Prover’s results

What happens when the tool finds a
counterexample to induction?

certora

https://vaas-stg.certora.com/output/23658/34dcbb8636704a8aacaca06c5f42f134?anonymousKey=9644b1158f23354615b3d226ac73d60c11e8cb2a
https://vaas-stg.certora.com/output/23658/34dcbb8636704a8aacaca06c5f42f134?anonymousKey=9644b1158f23354615b3d226ac73d60c11e8cb2a

Overview of counterexample

CERTORA

ConstantProductPool
E Rules

) \ v |[@
Status v Name v Time v
> @ noDecreaseByOther 14s
lenvfreeFuncsStaticCheck Os
Detailed trace: *
: balanceGreaterThanReserve 14s
P re-state monotonicityOfMint 155
integrityOfTotalSupply 21s

Assumption Tr——— >

integrityOfTotalSupply > integrityOfTotalSupply_preserve > burnSingle(address,uint256,address) > © invariant violated in post-state

invariant integrityOfTotalSupply()

(totalSupply() == @ <=> getReserved() == 0) &&

(totalSupply() =

Call Trace ype tc °

@ <=> getReservel()

9)

Storage State
multi contract setup

rule parameters setup

contract address vars initialized

last storage initialize

assumptions about extcodesize
assumptions about contracts' addresses
assumptions about starting balances
assumptions about static addresses

assumptions about uniqueness of contracts’ addressses

. @ approve(address,uint256) 0s
Induction ste i e
@ increaseAllowance(address,uint256) 0s
cloned contracts have no balances
41 @ mint(address) 2
ostcondition chec Ml e s
@ transfer(address,uint256) 0s 5 PraseredBIBC Tt
fo addr uint2
© o 1256) 08 > assume invariant in pre-state
N o uint256,adress) | 155 > check effects of step taken by one of the functions
o0 > assortinvariant i post state
@ swap(address,address) 4s
Violated induction ste p © decreasaAliowanca(adrassuint256) os
@ integrityOfTotalSupply_instate 0s
integrityOfTotalSupply_skipped_preserve_token0) 0s
integrityOfTotalSupply_skipped_preserve_totalSupply0 0s
L i s t o f va | ues integrityOfTotalSupply_skipped_preserve_getReserve1(0s
integrityOfTotalSupply_skipped_preserve_token1(0s

@ certora

Q o @
Counterexample 1 v of1 | < || >
Variables
Type t

Rule Parameters -~
invariantF bumSinglefaddress,uint256,address

invariantCalldata
e “struct* e
Local Variables N
ConstantProdu oxf
DummyERC20A Ofic
DummyERC208 Oxfif

e.block.c

e.block difficulty
e.block.gaslimit
e.block.number
e .block.timestamp

e.msg.address

e.msg.sig
e.msg.value
invariantCalldata

invariantF.isFallback

bytemap intialized but unknowr
ox2712

09

0

Oxdfe1480

bytemap intalized but unknown
false

false

false

false

Step 1.

Understand violation

1. Violated assertion

invariant integrityOfTotalSupply()
(totalSupply() == @ <=> getReserveld(
(totalSupply() == @ <=> getReservel(

~ assume invariant in pre-state

— > ConstantProductPool.totalSupply()

0x143e

— > ConstantProductPool.getReserve0()

13

— > ConstantProductPool.totalSupply()

0x143e

— > | ConstantProductPool.getReserve1()

How did this
become zero?

14

— > totalSupply() == 0 <=> getReserve0() == 0 && totalSupply() == 0 <=> getReservel() ==

true
> check effects of step taken by one of the functions
v assert invariant in post-state

— > ConstantProductPool.totalSupply()

0x1439

— > ConstantProductPool.getReserve0()

0x34a2

— > ConstantProductPool.totalSupply()

0x1439

ConstantProductPool.getReserve1()

0

— > | totalSupply() == 0 <=> getReserve0() == 0 && totalSupply() == 0 <=> getReservel() ==

false

‘— > Storage State

D)
D)

Step 2:
Understand the
change

1. Burning 5 out of Ox143e

invariant integrityOfTotalSupply()
(totalSupply() == @ <=> getReserved()
(totalSupply() == @ <=> getReservel()

v check effects of step taken by one

l

— « ConstantProductPool.burnSin

14

14

— + (internal) ConstantProductPool.burnSingle(tokenOut=0xfffc] liquidity=5, fecipent=0xc)

Load from ConstantProductPool.locked: 1
Store at ConstantProductPool.locked: 2

(internal) ConstantProductPool._getReserves()

(13, 14)

tokens for only tokenl

(internal) ConstantProductPool._getBalances()

(0x34a2, 14)

2. How can one get all the

(internal) ConstantProductPool.totalSupply()

0x143e

(internal) ConstantProductPool._burn(account=0xc, amount=5)

reserve?

@ certora

ad from ConstantProductPool.token0: Oxfffc *

ternal) ConstantProductPool._getAmountOut(amountin=13] reserveAmountin=0,

Feserve Amount(

14

> Storage State

Step 3: Understand pre-state and code

v Jtorage >tate

ConstantProductPool.sol X m X
— + ConstantProductPool
75
76 // Burns LP tokens and swaps one of the output tokens for another —— _balances[0x0]: 1000
ser receives amountOut in tokenOut
1. TokenO balance of the tion burnSingle(address tokenOut, uint256 liquidity, address recipent) — _balances[Oxc]: 5
SyStem >> reserveO [{zz}:lc ——_balances[0x2712]: 1
BT returns (uint256 amountOut)
82 { —— _totalSupply: 0x143e

9 A t ti ted (uint256 _reserve®, uint256 _reservel) = JgetReserves();
: mount out Is compute (uint256 balance®, uint256 balancel) = _gdtBalances(); locked: 1

in terms of balance uint256 _totalsupply = totalSupply();

P reserve0: 13

But swapping tokenO to Uinkawe| amounte = (liquidity balancea|)|/ _totalsupply;
tokenl is in terms of uinf256 amountl = ((Iquidity * batancel)|/ _totalSupply; reservel: 14
reserve _bufn(recipent, liquidity); T okehENOxt
U1 if [tokenOut == token®) { |
92 amountl += _getAmountout (e

% certora 03
94 _reserved - amounto, — v DummyERC20A
95 . Teservel - amoun

96 ;o L bi0xf]: 0x3422

What happens when the tool successfully
verifies the code?

Tautological rule example - Notional

Notional
@NotionalFinance

The white hat who reported the bug will receive $1 million USD and
a 100,000 NOTE bonus for their efforts and our bounty program
will continue

Tautological rule example - Notional

assert 0 <=1 &8 1 <9 &&
getBitmapCurrency(account) != 0 &&

(

(hasCurrencyMask(account, i) && getActiveUnmasked(account, i) == 0) ||
getActiveMasked(account, i) ==
=> getActiveUnmasked(account, i) != getBitmapCurrency(account)

An asset cannot be both bitmap and active

@ certora

Tautological rule example - Notional

assert |0 <=1 && 1 < 9 &&

getBitmapCurrency(account) != 0 &&
(

(hasCurrencyMask(account, i) && getActiveUnmasked(account, i) == 0) ||
getActiveMasked(account, i) ==
) => getActiveUnmasked(account, i) != getBitmapCurrency(account)

An asset cannot be both bitmap and active

@ certora

Tautological rule example - Notional

assert 0 <=1 &8 1 <9 &&
getBitmapCurrency(account) != 0 &&

(

(hasCurrencyMask(account, i) && getActiveUnmasked(account, i) == 0) ||
getActiveMasked(account, i) ==
) => getActiveUnmasked(account, i) != getBitmapCurrency(account)

If the bitmap currency is not zero, and the active currency is zero, then
the bitmap and active currencies are different

@ certora

Tautological rule example - Notional

assert 0 <=1 &8 1 <9 &&
getBitmapCurrency(account) != 0 &&

(

(hasCurrencyMask(account, i) && getActiveUnmasked(account, i) == 0) ||
getActiveMasked(account, i) ==
) => getActiveUnmasked(account, i) != getBitmapCurrency(account)

Same tautological statement 0000000000000000
Masked [
]

Unmasked

@ certora

L ess is more

D The simpler rule catches the bug

CODE
invariant bitmapCurrencyIsNotDuplicatedInActiveCurrencies(
address account, uintl44 j

)
0 <=1&& 1i<9
&& getActiveUnmasked (account, i) != 0 && hasCurrencyMask (account, i)

=> getActiveUnmasked (account, i) !=
getBitmapCurrency (account)

https://vaas-stg.certora.com/output/43260/839ecb426915da2567dd/?anonymousKey=25847f026ad5a098eba6cf2df7d57e2c94677988

Mutating Testing for Improving Spec(Chandra Nandi)

@ certora Mutation testing

11 Rules

Q_ Search input text

5 Successful

R5 (6) — integrityPoints

R1 (3) — allowVote

R7 (2) — integrityPointsOfWinner_pre...

R9 (2) — participationCriterion

R10 (1) — singleVote

6 Unsuccessful

R2 — envfreeFuncsStaticCheck

R3 — golballyVoted

R4 — integerityVote

R6 — integrityPointsOfWinner_instate
R8 — noEffect

R11 — voteCommutativity

@ certora

50% 8/16

5/ 11

— s

Coverage Caught Mutations Rules Solo Rules
Coverage Map
Proxy for spec quality: |
. . N\ / \\
no overlapping behavior) | ‘w
A - i
kR

Fé (Mutants

/ \

/ \

/ N

o ~dRh— /,,/
o,
Properties

m D [] L (]

16 Mutants

Q_ Search input text

8 Caught

Patch 12

Patch 13

Patch 17

Patch 22

Patch 34

Patch 4

Patch 6

Patch 8

8 Uncaught

Mutants that fail
verification

Patch 18 <

Patch 19
Patch 20

Patch 27

Mutants that pass
verification

Gambit: Mutating Testing for Improving Spec

@certoro Mutation testing D e v =

11 Rules 16 Mutants
Q Search input text 50 % 8/ 16 5/ 11 3/ 8 %/Proxy for SpeC quality:

Coverage Caught Mutations Rules Solo Rules 1 H
5 Successful 8 Caught no Overlapplng behaVIOr
R5 (6) — integrityPoints Cove rage Map Patch 12 \
R1 (3) — allowVote Patch 13
R7 (2) — integrityPointsOfWinner_pre... Patch 17
R9 (2) — participationCriterion Patch 22 MUta ntS that falled
R10 (1) — singleVote Patch 34 Ve“ﬂcatlon

Patch 4
6 Unsuccessful

Patch 6
R2 — envfreeFuncsStaticCheck

Patch 8
R3 — golballyVoted
R4 — integerityVote 8 Uncaught
R6 — integrityPointsOfWinner_instate Patch18
R8— noEfect Pateh 19 Mutants that passed
R11 — voteCommutativity fatch 20 Ver'f|cat|0n

RS Patch 27

ﬁ Properties
@ certora

UNSAT Core

For Unsat formulas SMT solver generates a minimal Unsat subset of clauses
Generalizes tautology and vacuity checking

Utilized to check specs

Low level code is a challenge

UNSAT Cores - Mapping CVL -> TAC

CVL

rule tautology(uint256 fundId, method f) {
address manager = getCurrentManager(fundId);
address other;
require other != manager;
env e;
calldataarg args;
f(e,args);
address newManager = getCurrentManager(fundId);
assert (newManager!= other
|| newManager != manager);

manager800 = R32 (result of getCurrentManager)
tacTmp809 = other807

tacTmp810 = R32

B55 = ! (tacTmp809==tacTmp810)

assume B55

::Invoke f args :3::

newManager826 = R49 (result of getCurrentManager)
tacTmp834 = R49

tacTmp835 = other807

tacTmp833 = ! (tacTmp834==tacTmp835)

tacTmp837 = R49

tacTmp838 = R32

tacTmp836 = ! (tacTmp837==tacTmp838)
certoraAssert_1 = tacTmp833||tacTmp836

assert certoraAssert_1

UNSAT Cores - Mapping CVL -> TAC

CVL TAC

rule tautology(uint256 fundId, method f) { ’
env e;

Hesargers _

certora

UNSAT Cores - Mapping TAC -> SMT

manager800 = R32 (result of getCurrentManager)
tacTmp809 = other807

tacTmp810 = R32

B55 = !(tacTmp809==tacTmp810)

assume B55

::Invoke f args :3::

newManager826 = R49 (result of getCurrentManager)
tacTmp834 = R49

tacTmp835 = other807

tacTmp833 = ! (tacTmp834==tacTmp835)

tacTmp837 = R49

tacTmp838 = R32

tacTmp836 = ! (tacTmp837==tacTmp838)
certoraAssert_1 = tacTmp833||tacTmp836

assert certoraAssert_1

@ certora

(set-logic

(assert ...
(assert ...
(assert ...
(assert ...
(assert ...
(assert ...e
(assert ...
(assert ...
(assert ...
(assert ...
(assert ...
(assert ...
(assert ...
(assert ...
(assert ...
(check-sat)
(get-unsat-

QF_UFDTLIA)

(= manager800 R32) ...)

(= tacTmp809 = other8e7) ...)

(= tacTmp810 = R32) ...)

(= B55 (not (= tacTmp809 tacTmp810) ...)
B55 ...)

ncoding of Invoke f ...)

(= newManager826 R49) ...)

= tacTmp834 R49) ...)

= tacTmp835 otherg8o7) ...)

= tacTmp833 (not (= tacTmp834 tacTmp835))) ...)
= tacTmp837 = R49) ...)

= tacTmp838 = R32) ...)

= tacTmp836 (not (= tacTmp837 tacTmp838))) ...)
(= certoraAssert_1 (or tacTmp833 tacTmp836)) ...)
certoraAssert_1)

core)

UNSAT Cores - Mapping TAC -> SMT

TAC SMT
(set-logic QF_UFDTLIA)

(check-sat)
(get-unsat-core)

certora

UNSAT Cores - SMT Solving

(set-logic QF_UFDTLIA)

(assert ... (= manager800 R32) ...)

(assert ... (= tacTmp809 = other8o7) ...)

(assert ... (= tacTmp810 = R32) ...)

(assert ... (= B55 (not (= tacTmp809 tacTmp810) ...)
(assert ... B55 ...)

(assert ...encoding of Invoke f ...)

(assert ... (= newManager826 R49) ...)

(assert ... (= tacTmp834 R49) ...)

(assert ... (= tacTmp835 other807) ...)

(assert ... (= tacTmp833 (not (= tacTmp834 tacTmp835))) ...)
(assert ... (= tacTmp837 = R49) ...)

(assert ... (= tacTmp838 = R32) ...)

(assert ... (= tacTmp836 (not (= tacTmp837 tacTmp838))) ...)
(assert ... (= certoraAssert_1 (or tacTmp833 tacTmp836)) ...)
(assert ... certoraAssert_1 ...)

(check-sat)
(get-unsat-core)

UNSAT Cores - SMT Solving

(set-logic QF_UFDTLIA)

(assert ... (= manager800 R32) ...)

(assert ... (= tacTmp809 = other8o7) ...)

(assert ... (= tacTmp810 = R32) ...)

(assert ... (= B55 (not (= tacTmp809 tacTmp810) ...)
(assert ... B55 ...)

(assert ...encoding of Invoke f ...)

(assert ... (= newManager826 R49) ...)

(assert ... (= tacTmp834 R49) ...)

(assert ... (= tacTmp835 other807) ...)

(assert ... (= tacTmp833 (not (= tacTmp834 tacTmp835))) ...)
(assert ... (= tacTmp837 = R49) ...)

(assert ... (= tacTmp838 = R32) ...)

(assert ... (= tacTmp836 (not (= tacTmp837 tacTmp838))) ...)
(assert ... (= certoraAssert_1 (or tacTmp833 tacTmp836)) ...)
(assert ... certoraAssert_1 ...)

(check-sat)
(get-unsat-core)

& certora UNSAT

UNSAT Cores - SMT Solving

(set-logic QF_UFDTLIA)

(assert ... (= manager800 R32) ...)

(assert ... (= tacTmp809 = other8o7) ...)

(assert ... (= tacTmp810 = R32) ...)

(assert ... (= B55 (not (= tacTmp809 tacTmp810) ...)
(assert ... B55 ...)

(assert ...encoding of Invoke f ...)

(assert ... (= newManager826 R49) ...)

(assert ... (= tacTmp834 R49) ...)

(assert ... (= tacTmp835 other807) ...)

(assert ... (= tacTmp833 (not (= tacTmp834 tacTmp835))) ...)
(assert ... (= tacTmp837 = R49) ...)

(assert ... (= tacTmp838 = R32) ...)

(assert ... (= tacTmp836 (not (= tacTmp837 tacTmp838))) ...)
(assert ... (= certoraAssert_1 (or tacTmp833 tacTmp836)) ...)
(assert ... certoraAssert_1 ...)

(check-sat)
(get-unsat-core)

% certora UNSAT CORE

UNSAT Cores - BackMapping CVL <- TAC <- SMT

rule tautology(uint256 fundId, method f) {

address manager = getCurrentManager(fundId);

address other;

require other != manager;
env e;

calldataarg args;
f(e,args);

address newManager = getCurrentManager(fundId);

assert (newManager!= other
|| newManager != manager);

(set-logic

(assert ...
(assert ...
(assert ...
(assert ...
(assert ...
(assert ...e
(assert ...
(assert ...
(assert ...
(assert ...
(assert ...
(assert ...
(assert ...
(assert ...
(assert ...
(check-sat)
(get-unsat-

QF_UFDTLIA)

(= manager800 R32) ...)

(= tacTmp809 = other8e7) ...)

(= tacTmp810 = R32) ...)

(= B55 (not (= tacTmp809 tacTmp810) ...)
B55 ...)

ncoding of Invoke f ...)

(= newManager826 R49) ...)

= tacTmp834 R49) ...)

= tacTmp835 otherg8o7) ...)

= tacTmp833 (not (= tacTmp834 tacTmp835))) ...)
= tacTmp837 = R49) ...)

= tacTmp838 = R32) ...)

= tacTmp836 (not (= tacTmp837 tacTmp838))) ...)
= certoraAssert_1 (or tacTmp833 tacTmp836)) ...)
certoraAssert_1 ...)

core)

UNSAT CORE

UNSAT Cores - Vacuous Spec

rule tautology(uint256 fundId, method f) {
address manager = getCurrentManager(fundId);
address other;
require other != manager;
env e;
calldataarg args;
f(e,args);
address newManager = getCurrentManager(fundId);
assert (newManager!= other
|| newManager != manager);

UNSAT Cores - Vacuous Spec

rule tautology(uint256 fundId, method f) {

address manager Irrelevant function calls and variable

address other; .

require other != manager; aSS|gnments!!!
env e;

calldataarg args;

address newManager = getCurrentilanager(Fundzd)s

assert (newManager!= other
|| newManager != manager);

%‘; certora

Mitigating SMT Complexity

UNSAT

Splitting

Subprogram A
//~ {HMEOUT} ~\\
x = compute()
Original Program assume x % 2 ==
return functionA() SAT
x = compute() < SPE
it X % 2 == 0 /—Mﬁ TIMEOUT
return functionA() - -
else:
return functionB() Subprogram B

N & N)

x = compute()
assume X % 2 =0 \\\\\\
SPD

return functionB()

% certora 4 4

Splitting

Experimental Evaluation

Time per Rule (3 run: rule.t > 5)

10000.0- Solving Result
= [O ERROR - VIOLATED
1 I O PROVED
] | O TIMEOUT - VIOLATED
O VIOLATED
200001 ® $o ' O VIOLATED - TIMEOUT
60 newly solved 09 PRl P 3)/ |
1000.0 g ? e g [
3 o ©® 7
- l
i I
200.0 ?
o
-E 100.0- l
E— 5| b
o u
@] [
Bt]
3 l
O 20.0-
£ |
=
S 100 [
1 ?
] [3 new timeouts
2.0 I
I
1.05 |
] I
] " |
] V4
0.2 7 |
. l
<>
) certora Va2 o 2o o020 oo T iatoo | Hoseoo

with splitting

Custom Over Approximation and Axiomatisation

Basic Encodings
Precise Nonlinear Integer Arithmetic (NIA)

Over-approximating Linear Integer Arithmetic (LIA) .
We runa portfolio of LIA and NIA encodings with many solvers in parallel

Example LIA Multiplication Axiomatisation

a*b modelled with an uninterpreted function a-b with axioms:

a0=0 a>0,b>0=ab>0 a>0,b>0=abz2aab2b
DomaalhbS_pbe'%iﬁc Overflow ?A?(’lgrﬁ %)@%Bfeo ~and many other
(@>0 && b>0) => ((a*b % 2A256)/a == b <=> a*b < 2A256)

\

Assumption from the program Equivality hint for the solver To verify: no overflow
@ certora (2A256 -1 = max uint)

LIA + NIA Portfolio

Experimental Evaluation

Time per Rule (3 run: rule.t > 5)

10000.0- Solving Result
3 O PROVED
. | O TIMEOUT
y | O TIMEOUT - PROVED
i ° 4 O TIMEOUT - VIOLATED
2000.01 21 newly solved 13 ® | g
1000.0- : VIOLATED - ERROR
i [
] I
200.0- it |
> o
£ 10004 ° |
)] |
< 4
=] ° '
|
'g 20.0- 8 _
S 8 [1 new timeout
] 10.053 |
. |
] |
2.0 I
|
1.0 = / l
. 7 l
] " |
] V4
0.2 7 |
4 |
05
0.14 o o
“ certora 01 02 1o 2 """10.0 20.0 100.0 40000 10000.0

LIA overapproximation + exact NIA approach

Learned Lemmas Sharing

Given a formula F, an SMT solver says: Example
| L= (x=5) A
F is SAT, or (y<=10Vy>20)A
F is UNSAT, or (y <100) A
Timeout, but learned F => L for some L (z=xV z>10)

Z3
Yices

CVC5

CVCS learning 2 ,

solving time

certora

Grounding Quantifiers (Basic Idea)

Let “assume forall x. f(x) = O” appear in the verification condition (VC)
Natural SMT Encoding

via universal quantification
Our Encoding

Collect all instances of f appearing in the VC, say f(1), f(x), f(y + 2)
Replace assume forall x. f(x) = O in the VC with:

assume f(1) = O

assume f(x) = O

assume f(y + 2) =0

@ certora

Al & SMT better together

Memory in EVM is a monolithic array of bytes

SMT must infer facts about non-aliasing

Certora Prover performs a pre-processing of bytecode
Ensure non-interference between accesses to memory regions
Resolve external function calls which improves precision
Simplify the SMT formulae, lowers burden on solvers

No Analysis (imprecise) No mem-splitting rewrites (slow)
149/5348 tasks had spurious counterexamples upto 42 min slowdown in SMT solving time
@ certora unresolved external function calls e.g., due to complex / too many
treated as “havocs” read-over-write axioms

Take Away

Formal verification is useful for DeFi
Developers and security researchers can write specifications
Code is law
Ratio of lines per $$$
Code is tricky
Bugs have huge costs
Security budget is high

But more is needed
Specifications
Static Analysis
SMT
Programming Language design

Certora takes a first step

@ certora

More Take Away(Jaroslav Bendik)

LIA is sometimes good over-approximation for NIA
The program contains non-linear but the specs do not

Unsat-cores are key to spec quality checking
Array theory & bitvectors drastically complicate reasoning
Most interesting specs initially time-out

Sometimes solved with user provided summaries
Abstract interpretation is a key

Domain specific axioms can make SMT faster
Overflow checking

Memory analysis is key
Eliminate low level storage

@ certora

Myths And Reality About Formal Verification

Myths Reality
e FV can only prove absence of bugs Biggest value of FV is finding bugs
e Hardest problem is computational Hardest problem is specification
e FV produces bullet-proof code FV drastically improves code security
e FVreplaces auditing FV improves auditing
e FV comes last as a one-time deal FV comes first and guarantees

code upgrade safety

@ certora

Conclusion

Bug finding is hard
Auditing is good but not enough

Fuzzing from initial state until....

Static analysis and SMT better together

Static analysis reduces SMT complexity
SMT eliminates false alarms by static analysis

Automatic Formal Verification

Arbitrary state

Finds tricky bugs

Proves high level properties
of low level code

Arbitrary programming style

