
Cryptography in the Wild
Kenny Paterson
Applied Cryptography Group
ETH Zurich

ViSP
June 28 2023

Overview
• The spread of cryptography in the wild
• The what
• The how
• Two case studies – Threema and MEGA
• The challenges
• The why
• Concluding remarks

2

• e-commerce
• social media
• online personal banking
• payment systems
• secure messaging

(WhatsApp, Signal,
Telegram, Threema,…)

• mobile telephony
• gov/mil comms systems
• video conferencing

3

• SSH

• VPN/remote access

• disk encryption

• cloud storage

• TPMs, SGX, …

• identity-card systems

• IDM systems

• ticketing systems

• DRM

The Spread of Cryptography in the Wild

• cryptocurrencies

• crypto-custody solutions

• PrivacyPass

• Prio - privacy-preserving
browser analytics.

• privacy-preserving contact
tracing (GAEN, DP3T)

• …

4https://transparencyreport.google.com/https/overview?hl=en

The Spread of Cryptography in the Wild

Crypto in the Wild – The What

• Find interesting examples of cryptography being used in standards,
products, deployed systems.

• Analyse them to:
- Find and responsibly disclose vulnerabilities

AND/OR

- Build security models and proofs for deployed systems.

- Sometimes identify new cryptographic problems for further research.
- Write papers, build relationships with vendors, train students, improve

the quality of deployed cryptography.

Origins of “Crypto in the Wild”

6

Origins of “Crypto in the Wild”

7

Origins of “Crypto in the Wild”

8

https://www.igors.org/

Data at rest
aka secure storage

Data in transit
aka secure communications

Data under
computation

Recent Crypto in the Wild Projects
Telegram (IEEE S&P 2022 🏆)

Bridgefy – again (USENIX Sec 2022)
OpenPGP (ACM CCS 2022 🏆)

EDHOC (Euro S&P 2023)
Telegram – again (AsiaCCS 2023)

Threema (USENIX Sec 2023)
Jitsi Meet (disclosed)

Briar (disclosed)

MEGA (IEEEE S&P 2023 🏆)
MEGA – again (EuroCrypt 2023)

NextCloud (disclosed)

MongoDB Queryable
Encryption (USENIX Sec

2023)

Zcash and Monero side-channels
(USENIX Sec 2020)

Ethereum PoW sync (USENIX Sec 2023)

Pink indicates a Master’s
student project at ETH

Criteria for target selection:
• Use of non-trivial and/or non-standard cryptography
• Size of user base
• Local importance
• Availability of source code
• Legality of reverse engineering
• Availability of a whitepaper describing crypto architecture
• Strength/credibility of security claims made by vendor
• “Smell”

11

Crypto in the Wild – The How

Process (attack mode):
• Define target and objectives
• Develop relevant threat model(s)
• Read the whitepaper/code
• Do:

• Build pseudo-code models of the cryptographic “core”
• Write down attack ideas on paper
• Build and test Proof-of-Concepts (PoCs) for the attacks

• Until enough attacks have been found
• Write a research paper, run disclosure process

12

Crypto in the Wild – The How

Process (proof mode):
• Define target and objectives
• Develop relevant threat model(s)
• Read the whitepaper/code
• Do:

• Build pseudo-code models of the cryptographic “core”
• Develop suitable security model(s)
• Write security proofs

• Until enough proofs have been produced
• Write a research paper

13

Crypto in the Wild – The How

| ⟩ + | ⟩

14

Crypto in the Wild – The How

proof
mode

attack
mode

15

Crypto in the Wild – The How

IEEE Security and Privacy Symposium 2022

Distinguished paper award

https://mtpsym.github.io/

Some things to look out for when in attack mode:
• ECB mode
• Exotic + home-made encryption modes
• Lack of integrity mechanisms
• Improper use of integrity, e.g. MtE, E&M
• Padding oracle attacks
• Nonce reuse
• Lack of proper key separation/key reuse problems
• Bad interactions between different protocols
• Bespoke RSA padding schemes
• Roll-your-own authentication and key exchange protocols
• Naïve use of NaCl and other libraries
• Use of weak PRNGs or homebrew randomness generation methods
• Compression combined with encryption
• ….

16

Crypto in the Wild – The How

Brief coverage of a couple of case studies.
• Threema – a “Swiss-made” secure messenger.
• MEGA – an E2EE cloud storage provider.

17

Crypto in the Wild – Examples

- An “end-to-end encrypted instant messaging application” for

Android and iOS

- Released in 2012

“Threema is 100% Swiss Made, hosts its own servers in Switzerland,
and, unlike US services (which are subject to the CLOUD Act, for

example), it is fully GDPR-compliant."
18

What is Threema?

[1] https://threema.ch/en/about (Last checked 19 Mar 2023)
19

- 11 million private users worldwide 1

- Various organizations and political entities:

Who Uses Threema?

https://threema.ch/en/about

20

External ActorCompelled Access Compromised Threema
server

Threat Models

Two layers of encryption

E2E

C2S C2S

21

👨👩
(skA, pkA) (skB, pkB)

High-level View of Threema

(skA, pkA) (skB, pkB)Encrypted under
K = DH(skA,pkB) = DH(skB,pkA)

No Forward Secrecy! ❌

No Post-Compromise Security! ❌
22

👨👩

E2E Protocol

metadata-box

msg type message content PKCS7 Padding

AE.Enc

nonce

metadata encrypted msgnonce

23

K

KDF AE.Enc

(a subset of) metadata

0x01 Hello World! 0x02 0x02From Alice, to Bob, timestamp, …

❌

E2E Protocol: Message Format

24

👨👩
(skA, pkA) (skB, pkB)

Establishes a client-server session key
through an authenticated key exchange

KSA-S KSB-S

C2S Protocol

👩 (skA, pkA) (skS, pkS)

(eskA, epkA)←KeyGen() (eskS, epkS)←KeyGen()

25

Ksession←DH(eskA, epkS)

Kvouch←DH(skA, pkS)

vouch ←Enc(Kvouch,epkA)
Enc(Ksession, IDA || vouch || …)

Enc(Ksession,m)

…

…

(Long-term keys in bold font)
C2S Protocol (simplified)

Kmsg←DH(skA, pkB)

👩(skA, pkA) (skS, pkS)

26

Enc(Kvouch,epkA)

👩(skA, pkA) (skB, pkB)

Enc(Kmsg,msg)

Kvouch←DH(skA, pkS)

E2EC2S

vouch

👨

Deja-vu?

Kmsg←DH(skA, pkS)

👩(skA, pkA) (skS, pkS)

27

Enc(Kvouch,epkA)

👩(skA, pkA)

(N/A, pkS)

Enc(Kmsg,msg)

Kvouch←DH(skA, pkS)

E2EC2S

vouch

Attacker would like msg to encode a public key (for
which it knows the corresponding private key)

(skB, pkB)😈

Deja-vu?

Idea: find a keypair (esk, epk) such that:

epk = 0x01 || σ || 0x01

UTF-8 valid string of
length 30B

28

msg type message content PKCS7 Padding

0x01 Hello World! 0x02 0x02

Recall: The structure of a message in the E2E protocol is

Forging a Vouchbox

👩 😈
(skA, pkA)

My E2E public key is pkS!

Can you send me σ as a text message?

K ← DH(skA, pkS)

Enc(K, 0x01 || σ || 0x01) ✅

29

E2E

Enc(K, 0x01 || σ || 0x02 0x02) ❌
= Kvouch in C2S

= Enc(Kvouch, epk)

Forging a Vouchbox

- C2S x E2E cross-protocol attack

- Sending a text message…

compromises client

authentication forever!

30

- Now the attacker can

impersonate Alice to the server

I’m Alice! Any new
messages for me?

Yes: msg1, msg2, msg3

ACK msg1, msg3

😈

Impact of Vouchbox Forgery

31

epk = 0x01 || σ || 0x01

UTF-8 valid string of
length 30B

Requires sampling 251 keys!

Constructing the Keypair

32

Constructing the Keypair

33

Constructing the Keypair

34

Constructing the Keypair

35

Some optimizations and 8100 core-days later…

esk = 504ac13e00000000003000336d612d322d3232313231392d30332d3030323000

epk = 0175396a36df93276a6ae0a496d4bb5edf8331d79b573a2dcc813bdca1524101

u9j6�'jjखԻ^ כ�1 W:-́;ܡRA

Constructing the Keypair

- Threema Gateway: paid API

- Can register accounts with arbitrary

public keys

- Without proof of possession of the

corresponding private key!

=> *LYTAAAS

36

Registering the Server’s Public Key

• We’ve focussed on describing just one attack here.
• In total, we found 7 attacks (one of which was a rediscovery).
• Varying degrees of practicality and impact.
• Tricky disclosure and review process.

37

Threema – Wrap-up

USENIX Security 2023, to appear
https://breakingthe3ma.app/

38

MEGA
• MEGA – E2EE cloud storage and communication platform

with 280M registered users, 1000 Petabytes+ of stored data.
• Very strong security claims, promising users that MEGA

cannot access user data.
• Backendal, Haller and Paterson [BHP23]: five attacks in

malicious service provider setting.
• MEGA did not implement countermeasures proposed in

[BHP23], instead relying on validation of plaintext payloads.
• These checks were sufficient to prevent the specific attacks

of [BHP23], but not sufficient in general…

• Albrecht, Haller, Marekova, Paterson [AHMP23]: two
new attacks, also breaking confidentiality of user files.

The two new attacks of [AHMP23] are enabled by:
1. The continued lack of key separation and integrity protection in MEGA design.
2. An ECB encryption oracle present in MEGAdrop, a feature unrelated to the protocol under

attack.
3. Detailed reporting of errors by the client to the server, added shortly after the patch for the

attacks of [BHP23].

39

MEGA

Each user has:
• a 128-bit encryption key ke derived from their password
• a 128-bit master key kM
• a 2048-bit RSA keypair (pk, sk) file encryption keys kF1 , kF2 , . . .

The keys are encrypted using AES-ECB via:
• [kM]ke
• [kF]kM ,[sk]kM

Shared-file encryption keys k′F are encrypted under pk using RSA.
This key is also used in the user login/authentication protocol.

40

MEGA Key Hierarchy

41

MEGA

• Custom encoding of sk for RSA-CRT decryption, referred to as privk:
• the prime factors p, q of the RSA modulus.
• the secret exponent d the value u = q−1 mod p.

• Each value is prefixed with a 2-byte length field
• Split into 16-byte blocks for AES-ECB

42

MEGA login procedure

43

MEGA client-side parsing and decryption

MegaDec(kM, [privk]kM , [m]pk , uh):
1.1 sk ← DecryptPrivk(kM, [privk]kM) / AES-ECB

2.2 sidʹ ← DecryptSid(sk , [m]pk) / RSA-CRT

3.3 Return sidʹ

Both steps rely on validity checking of the decrypted values and
return distinguishable errors to the server!

44

MEGA client-side parsing and decryption

Explicit errors due to validity checking:
• In DecryptSid(sk,·), a length check on the plaintext together with a legacy

padding check reveal if the second byte of m is 0.
• Yields an attack based on small subgroups.

Implicit errors due to bugs in the low-level library:
• In DecryptSid(kM, ·), failure in recomputing u’ ← q-1 mod p reveals if gcd(p, q)

≠ 1.
• Yields an attack based on modular inverses.

Threat model: malicious service provider trying to
access customer data.

Goal: obtain ECB decryption capability under kM in
order to recover sk (or any kF).

Cost measured mainly in the number of login attempts.

45

Attacking MEGA

46

Warm-up: An ECB encryption oracle

• MEGAdrop lets anyone upload files to a folder in the cloud storage of the
recipient.

• Clients automatically re-encrypt the received shared-file keys.

A malicious provider can construct an ECB encryption oracle without
user interaction and without leaving traces!

• Let [B]kM be the target ciphertext block, OECBkM be the ECB encryption oracle, and ⊥inv be
the error output by MegaDec if gcd(p, q) ̸= 1.

• Main idea is for malicious server to construct [privk∗]kM (using OECBkM and [B]kM) such that
• p mod r = 0 for small prime r, and
• q contains B in the least-significant position

• Now ⊥inv is output by MegaDec at client if and only if q mod r = 0.
• By adjusting q we can learn B mod r.
• Repeat for a set of primes ri such that their product R is 128 bits.
• We can then learn B (=B mod R) from the B mod ri using CRT.
• Average cost: 627 login attempts and 66-91 OECBkM queries.

47

Attack Based on Modular Inverses

• We disclosed to MEGA in September 2022, suggesting mitigations.
• MEGA informed us that they would work on a larger redesign meant to:

• Change how private keys are stored,
• Remove the ECB encryption oracle,
• Replace the low-level crypto/bigint library.

• Upgrade of clients in March 2023.
• MEGA awarded a bug bounty and updated their security blog.
• Smart positioning by MEGA, portraying new attacks as part of previous set

of attacks.
• Smooth disclosure and scientific review process.

48

MEGA – Disclosure and Remediation

49

PKC 2023 🏆
eprint.iacr.org/2022/914

IEEE S&P 2023 🏆
https://mega-awry.io/

Eurocrypt 2023
mega-caveat.github.io/

512 logins

6 logins
(on unpatched version)

2 logins
(on unpatched version)

Attacks Only Get Better…

• Identifying all relevant cryptographic components and their interactions can be time-
consuming.

• Attacks that work on paper may not work in practice due to unforeseen behaviours.
• Interacting with vendors can be complicated:

• IND-CPA vs key recovery
• Producing easy-to-use PoCs
• CTO vs CEO
• Lack of vendor experience in handling disclosure (e.g. uncoordinated patching)
• Lack of willingness to engage in disclosure

• Interactions between disclosure and scientific process
• Extra work:

• Disclosure
• Website, logo, media,…

50

Crypto in the Wild – Challenges

51

Crypto in the Wild – Challenges

52

Crypto in the Wild – Challenges

• Many of the systems we analysed had already been subjected to
cryptographic audits.

• 6 months of a determined ETH Master’s student plus research team
compared to a few days of work by a bored auditor.

• You (sometimes) get what you pay for.

53

Crypto in the Wild – A Word on Audits

• It’s fun!
• You may find novel attack vectors that are applicable elsewhere.
• It’s a great tool for engaging students in the field.
• It provides teachable moments to use in the classroom.

• Key re-use really is bad.
• Integrity protection really does matter.
• etc.
• (But this is only relevant if you teach cryptography in a particular way.)

54

Crypto in the Wild – The Why

• Cryptography has become ubiquitous and crucial to the security of the
digital society.

• Theory is necessary, but not sufficient, for building secure systems.

• “Crypto in the Wild” research plays an important role in bridging the gap
between theory and practice.
• Identifying new use cases and cryptographic needs not currently met

by what’s available in the literature.
• Identifying how and why developers get cryptography wrong.

55

Crypto in the Wild – The Why

• Extra effort beyond the usual scientific process.

• Disclosure may go wrong and can generate adverse publicity.

• Much of the low-hanging fruit may already have been harvested. (??)

• Resulting research papers tend not to be highly cited. (??)
• But do seem to win best paper awards. J

56

Crypto in the Wild – The Why Not

• Sometimes observed in paper reviews…

• If science is about the study and understanding of natural phenomena,
then, yes, it is science.

• How developers use and abuse cryptography may tell us something
useful about:
• Our education system (how we teach cryptography).
• How we make cryptography available to developers (developer-proof

libraries).
• The theory/practice pipeline.

57

BuT iS It sCiENce?

Future Perspective
• “Crypto in the Wild” has been successful in the traditional areas of cryptographic

application: first secure communications, then data at rest.

• But cryptography is starting to be widely used for much more advanced
applications, including “data under computation” (MPC, FHE, ZKP) as well as in
cryptocurrencies.

• Based on our work so far, and work of others, we predict that the mistakes of
the past will be repeated in these new settings:

• Issues in the core algorithms and crypto-libraries.

• Mis-application of the libraries in building secure protocols and systems.

• Example: Ethereum PoW sync mechanisms.

• Let’s collaborate!

58

Professor Kenny Paterson
Applied Cryptography Group
kenny.paterson@inf.ethz.ch

ETH Zurich
Applied Cryptography Group
Department of Computer Science
Universitätstrasse 6
8092 Zurich, Swizterland

https://appliedcrypto.ethz.ch/

Contact:

https://appliedcrypto.ethz.ch/

