
Andrei Sabelfeld @asabelfeld

s

Joint work with M. Ahmadpanah, D. Hedin, M. Balliu, and E. Olsson

SandTrap: Securing JavaScript-driven Trigger-Action Platforms

Trigger-Action Platforms (TAPs)

“Connecting
otherwise
unconnected
services and
devices”

“Fulfilling the
promise of IoT”

Trigger-Action Platforms (TAPs)

• “Managing users’ digital lives” by connecting
• Smart homes, smartphones, cars, fitness armbands
• Online services (Google, Dropbox,…)
• Social networks (Facebook, Twitter,…)

• End-user programming
• Users can create and publish apps
• Most apps by third parties

• Web interface + smartphone clients
• Proprietary: IFTTT and Zapier
• Open-source: Node-RED

IFTTT app

If this then that
Trigger Action

JavaScript in the middle!

Threat model: malicious app maker

If
then

IFTTT’s access control

If this then that
Trigger Action

Users explicitly
grant the app access

JavaScript
“sandboxed”

Enough?

IFTTT’s
sandbox

IFTTT’s
sandbox

TAP architecture

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

TAP

Threat model:
Malicious app maker

Sandbox breakout scenarios 1

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

• Assumption: User installs a malicious app that poses as benign in app store

Malicious app maker

PWNEDPWNED

• Compromised: Trigger and action data of the app

Sandbox breakout scenarios 2

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

• Compromised: Trigger and action data of other apps of the same user

Malicious app maker

PWNEDPWNED

PWNED PWNED

PWNED

• Assumption: User installs a malicious app that poses as benign in app store

Sandbox breakout scenarios 3

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

• Assumption: User installs a benign app from the app store

Malicious app maker

PWNEDPWNED

PWNED PWNEDPWNED

PWNED

• Compromised: Trigger and action data of the benign app

Sandbox breakout scenarios 4

Trigger ActionApp

Trigger ActionApp

• Assumption: User installs a malicious app that poses as benign in app store

Malicious app maker

PWNEDPWNED

PWNED PWNED

PWNED

PWNED

• Compromised: Trigger and action data of other apps of the same user and the TAP itself

Node-RED

glRbal
cRQWe[W

FlRZ FlRZ

NRde NRde
meVVage

NRde-RED

NRdeÁRZ
cRQWe[W

NRde

NRde.jV

Earthquake notification and logging

Node-RED: platform-level isolation vulns

gORbaO
cRQWe[W

FORZ FORZ

NRde MaOiciRXV
NRde

PeVVage

NRde-RED

NRdeÁRZ
cRQWe[W

MaOiciRXV
NRde

PRdXOe

RbjecW

NRde.jV

Node-RED: platform-level isolation vulns

• Malicious node may read and modify sensititve data
• Email node:
• Malicious email node:

Need access control at module and shared object level

node sendopts.to = node.name || msg.to;

node sendopts.to = node.name || msg.to + ", a@attacker.com";

Need fine-grained access control at the level of APIs and their values

• Malicious node may
• Abuse Node.js libraries like child_process to run arbitrary code
• Attack the Node-RED object shared by flows

Empirical study: platform-level isolation vulns
• Complexity and dependencies
• Scraped 2122 packages (5316 nodes)
• 4.16 JavaScript files (793.45 LoC) per package

• 1.85 direct dependencies

• Security classification
• 408 node definitions from the top 100 packages
• 70.4% may violate privacy
• 76.46% may violate integrity

• Name squatting attacks especially effective
• “type of node” controlled by attacker

Complex code, susceptible to camouflaging

Security implications due to trust propagation

Popular modules used in require

Node-RED: app-level context vulns

• Different from platform-level vulrns: attacking vulnerable components
• Attacks succeed even if the platform itself is secure

gORbaO
cRQWe[W

FORZ FORZ

NRde NRde
PeVVage

NRde-RED

MaOiciRXV
NRde

ÁRZ
cRQWe[W

MaOiciRXV
NRde

NRde.jV

Empirical study: app-level context vulns

• Analyze 1181 unique flow definitions from the official store
• 228 (19.31%) flows make use of context
• Found vulnerable flows among 25 most popular flows
• Exploiting inter-node communication
• Exploiting shared resources

Exploiting inter-node communication
• Sets global context

• Reads from global context

• Malicious node (from a different flow) may exhaust or overflow the water
• Other sprinkler systems vulnerable

Water Utility for SCADA systems

Exploiting shared resources
• Video stream for motion detection on

Raspberry Pi

• require and opencv can be disrupted by
attacker with access to flow or global context
• Other vulnerable nodes/flows: Google

Calendar, opencv, EmotivBCI Facial
Expression,…

btsimonh's node-opencv motion detection

Node-RED security policies

• Interpret from graphical interface

• Information may only flow according to the wiring
• No tampering with “Recent Quakes” by other nodes/flows
• No access to data (like local files) outside the flow

Allowlisting policies at four levels
•Module: “no modules allowed”, “only Dropbox module”
• API: “Dropbox API calls only in nodes that involve Dropbox”
• Value allowlisting:

“only u@example.com for
email notification, cannot replace
by a@attacker.com”
• Context: “only Water Utility flows

can write to shared variable
tankLevel”

Configuration 𝑐𝑜𝑛𝑓𝑖𝑔, 𝑤𝑖𝑟𝑒𝑠, 𝑃, 𝑉, S

Policy 𝑃 ⊆ 𝐴𝑃𝐼𝑠 ⊆ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

Values 𝑉(𝑓) ⊆ 𝑉𝑎𝑙𝑠

Shared access 𝑆 𝑥 ⊆ {𝑅,𝑊}
per node

• Malicious node attempting to send an email to attacker

• Water Utility: (tankLevel, W) for nodes that must write to
tankLevel
• Soundness
• Monitoring at node level guarantees global security

• Transparency
• No behavior modification other than raising security error

Formalization
Allowlist check

U, Z, [

HoVW SandTUap

[: "HHOOR"

\ : "WRUOd" .\ .\

[: "HHOOR" .[.[

\ : "WRUOd"

U, Z, [

• Proxy-based
• Secure usage of modules

• vs. isolated-vm and
Secure ECMAScript

• Symmetric proxies
• vs. vm2

• Policy generation
• Supporting policies at all four levels

• module, API, value, context
• IFTTT

• No modules, no APIs other than Trigger/Action
• Fine-grained URL policies

• Zapier
• Read-only protection of Zapier runtime
• Fine-grained URL policies

SandTrap fine-grained monitor

SandTrap on Node-RED

SandTrap takeaways

• IFTTT, Zapier, and Node-RED are all
vulnerable to attacks by malicious
app makers
• Breakouts
• Empirical studies

• SandTrap flexible monitoring
• Formal framework

• Soundness and transparency
• Policies

• module-, API-, value-, and context-levels
• Proxy-based implementation for JS
• Instantiation and benchmarking on IFTTT, Zapier, and Node-RED

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

Malicious app maker

TAP

