How to Commit to a Function

Dan Boneh Wilson Nguyen Alex Ozdemir

Stanford University

https://eprint.iacr.org/2021/1342

Cryptography: application areas

Traditional applications of Cryptography: Internet Security

= secure communication: encryption, key exchange, etc.

More recent applications of Cryptography: Blockchain applications

= data integrity: signatures, commitments, ZK proofs, ...

The Science of Blockchains:
Economics, Distributed Systems, Cryptography, Prog. Lang.

The Science of Blockchain

Conference 2022
(SBC'22)

Arrillaga Alumni Center, Stanford University
Aug. 29 - 31,2022

Committing to a Function

Recall: basic commitment schemes

Two algorithms:
e commit(m, r) - com (m € M, rrandominR)

* verify(m, com, r) = accept or reject

Basic properties:
* binding: cannot produce two valid openings for com.

* hiding: com reveals nothing about committed data m

A standard construction

Fix a hash function H: MXR — C

commitim,r). com < H(m,r)

verify(m, com, r): acceptif com=H(m,r)

Hiding and Binding for a suitable function H

Committing to a function

Fix a family of functions

Examples:

. €S={f:]Fg—l>IFp}:

F={f:X—>Y}

(x + x)?
(+)

/ J\
TN P
{ X)) { X2)

\\.AJ/

N

[X]: all polynomials in F,,[X] of degree < d

arithmetic circuits of size < s

Committing to a function

Prover Verifier

feF com; «— commit(f)

(secret) com,
x €X

yeY, zk-proof m
accept or
proof that: f(x) =y and f€F reject

Applications: a verifiably uniform policy

secret
f: credit score
function

reveals noting else
about the function

"'l - Ao 56\/

l SCorey,, = f (dpop) T, @ Verify 1,

... but is the function fair ??

Did Bank commit to a “fair” function ?

Suppose the bank commits to f. Is f fair ??

An unfair f(user,data):

if (user ==‘dan’) return(“perfect score”)

else return f(data)

What is a fair function?
* Several criteria developed by the field of algorithmic fairness

Is the function “fair” ?

Option 1: Trusted auditor(s)

* Checks f and signs com; if f is “fair”

Option 2: Zero knowledge proof of fairness

* Attach ZK proof m to coms. Anyone can verify proof.

A good direction for future research

... back to committing to a function: syntax

A (function-hiding) functional commitment scheme for F:

« setup(A) = pp, outputs public parameters pp

* commit(pp, f,r)— com, commitmentto f € F with r € R

a hiding and binding commitment scheme for the set F

* eval(Prover P, verifier V). foragiven com; and x € X, y €Y:

P(pp, f, x, y, r) = succinct proof m

V(pp, com;, x,y, m) — accept/reject

f(x)=y and f €F and
commit(pp, f, r) = comy

Examples of functional commitments

Polynomial commitment schemes: [KZG'10, ...]

* A functional commitment for the family F = IFz(fd) |1 X]

—> prover commits to a univariate polynomial,
later, can verifiably open the polynomial at any x € I,

Our question: how to commit to a general arithmetic circuit?

An example polynomial commitment

Dory: (eprint/2020/1274)
* transparent setup: no secret randomness in setup

* com; is a single group element (independent of degree d)

(=d)
p

 eval proofsizefor f € [F, ' [X] is |O(log d) | group elements

* eval verify time is O(log d) Prover time: | O(d)

Can we do the same for a general arithmetic circuit?

NOte: d dual concept [Libert-Romana-Yung’1se, ...]

Input-hiding functional commitment for F :

Prover Verifier
x€EX com, < commit(x) ‘
(secret) com,,
o s - —A f E T |
y E Y, Zk‘prOOf J[A that f(X) — y accept/reject

Efficiently implied by a zk-SNARK. Papers focus on weaker assumptions.

Constructing function-hiding

functional commitments

A trivial construction: small domain

f:D— T,

where

comy

|ID| ={1,2, ...,n}

(Merkle root)

H(f (1).r0)

H(f (2).r2)

H(F(3).r3)

H(f (4).r2)

Hf(n — 1),r)

H(f (n).r)

A trivial construction: small domain

A

f:D— T,

H(f (1).r0)

H(f (2).r2)

where |D|={1,2,...,n}
COom; (Merkle proof)
P
HF(3)ra) || Hf(4)ra) | oo [Hf(m—1),r) | |Hf(M)r)

Whie pbove fonetipOs witkrdsuper{pgl\gdeenaindizs ??

Another trivial construction

Prover Verifier
fEF com; + SHA256((f), 1)
(secret) com
veY, m |
generic zk-proof that Prover knows (f,7) s.t. accept/reject

com; = SHA256((f),r) and f(x) =y and fEF

The problem: inefficient! Can we do better?

Review: a preprocessing SNARK for a circuit C

A succinct preprocessing argument system is a triple (S, P, V):

e S(C) — publicpa

* P(S,,st,w) — shortproof m ; ||m| = O0(log(|C|), 4)

* V(S,st,m) fasttoverify ;

L

short “summary” of C

proof that C(st,w) = 0 l

ver and verifier

time(V) = 0(|st|, log(|C|), A)

)

why preprocess C??

Review: a preprocessing SNARK for a circuit C

A succinct preprocessing argument system is a triple (S, P, V):

* S(C) — public parameters (S,, S,) for prover and verifier

* P(S,,st,w) — short proof m ; ||| = 0(log(|C|), 1)

» V(S,st,m) fasttoverify ; time(V)=0(|st|, log(|C]), 1)

SNARK: (S, P, V) is complete, knowledge sound, and succinct

zk-SNARK: (S, P, V) is a SNARK and is zero knowledge

(Universal) preprocessing zk-SNARK = functional commitment?

Prover Cf(x’ y)i= f(x) -y Verifier

fer (S S) = S(C)

(secret) comy — Sv (called an index key) : comg
 ~ = -: X E X fm - s =

yeY, mw+«P(S, (x,y) .)
1 : zk-SNARK proof that Cq(x,y) = 0 V(S,.(x,y),)

Problems: (1) S, may not be a hiding commitmentto f
(2) whatif Cs is malformed? (i.e. f & F)

The problem

Problem 1: S, may not be a hiding commitment to f
* Easily solved by adding a blinding step in S(C¢, 1) (see paper)

Problem 2: committed Cf(x,y) := f(x) —y is malformed (f ¢ F)

hidden inputs more generally

f(x): *% _E—w Suppose: C¢(0,y9) = Cr(0,y1) =0

Prover can prove f(0) =yo and f(0) =y, !

What to do? Proof of function relation (PFR)

Prover (Sp, S S(Cf,r) Verifier
feF com; + 8§,
(secret) comy

PFR @

//’ 1 accept/reject

Prover knows a witness (f,7) s.t.
|f €F | and (-, com;) =S(Cf,7)

Challenge: build efficient PFR for common preprocessing zk-SNARKs

The Marlin and Plonk zk-SNARKs [CHMMVW’19, GWC’19]

Plonk: circuit Cs is represented as an arithmetic circuit of size < s

* S,: apoly. commitment to two univariate polynomials

* Our PFR proves: S, commits to a DAG with no hidden inputs

Marlin: circuit Cs is represented as an R1CS program (4, B, C)

* S,: apoly. commitment to nine univariate polynomials (unoptimized)

* Our PFR (11KB) proves: S, commits to matrices 4, B, C

so that for every x there is a unique satisfying y

Marlin: Proof of function relation

R1CS program for a circuit Cy:
represent Cr as matrices A,B,C € Ingm s.t. -

Ce(x,y) =0 iff Jw: (Av) o (Bv) = (Cv) where v =|w

Thm: (A4, B, C) defines a function f: X — Y whenever

A, B are lower triangular and C is diagonal

= need zk-SNARK that a committed matrix is lower triangular / diagonal

Marlin: Proof of function relation

Committing to a (sparse) matrix A € F3*™:

* Three polynomials row, col, val € F, [X]

row(i), col(i), val(i): encode i-th non-zero element

* S, contains poly. commitments to these three polynomials

Proof of diagonality: require that commit(col) = commit(row)

Proof of lower triangular: prove that col(i) < row(i) forallie

How?

See paper

https://eprint.iacr.org/2021/1342

Ensure orgs make decisions
uniformly across a population

Lots more to do:

* Efficient ZK proof of algorithmic fairness

e Efficient proof of function relation for other SNARKSs

THE END

https://eprint.iacr.org/2021/1342

