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Cryptography:  application areas

Traditional applications of Cryptography:     Internet Security

⇒ secure communication:   encryption,  key exchange,  etc.

More recent applications of Cryptography:    Blockchain applications

⇒ data integrity:   signatures, commitments, ZK proofs, …

The Science of Blockchains:   

Economics,  Distributed Systems,  Cryptography,  Prog. Lang.





Committing to a Function



Recall:  basic commitment schemes

Two algorithms:

• commit(!, ") ⇾ com (" ∈ ℳ,     % random in ℛ)

• verify(!, com, ") ⇾ accept or reject

Basic properties:

• binding: cannot produce two valid openings for com.

• hiding:  com reveals nothing about committed data !



A standard construction

Fix a hash function     $:ℳ×ℛ➝ )

commit(!, "):      com← $(!, ")
verify(!, com, "):      accept if com = $(!, ")

Hiding and Binding for a suitable function $



Committing to a function

Fix a family of functions     ℱ = {1: 2 ⇾ 3}

Examples:

• 5!(#$) 2 : all polynomials in 5![X] of degree ≤ 9

• :& = {1: 5!' ⇾ 5!} :   arithmetic circuits of size ≤ ;



Committing to a function
Prover Verifier

' ∈ (
(secret)

comf ⇽ commit(*)

+ ∈ ,

- ∈ .,     zk-proof  /
accept or

reject

comf

proof that:   *(+) = - and    *∈ ℱ



Applications:  a verifiably uniform policy
secret 

credit score
function

!:
dalice = financial data

scorealice = *(dalice)

dbob

scorebob = *(dbob)

Did the bank use 
the same function 

for both of us?

com!

/a

/b

Verify /a

Verify /b

reveals noting else
about the function

… but is the function fair ??



Did Bank commit to a “fair” function ?

Suppose the bank commits to  *.        Is * fair ??

An unfair *(user,data):

if  (user == ‘dan’)  return(“perfect score”)

else return 4*(data)

What is a fair function?

• Several criteria developed by the field of algorithmic fairness



Is the function “fair” ?
Option 1:   Trusted auditor(s)

• Checks * and signs com! if * is “fair”

Option 2:   Zero knowledge proof of fairness

• Attach ZK proof  / to  comf .      Anyone can verify proof.

• A good direction for future research



… back to committing to a function:  syntax
A (function-hiding) functional commitment scheme for ℱ:

• setup(5) ⇾ pp,      outputs public parameters  pp

• commit(pp, *, %) ⇾ comf commitment to  * ∈ ℱ with  % ∈ ℛ

a hiding and binding commitment scheme for the set  ℱ

• eval(Prover P,  verifier V):   for a given  comf and  + ∈ , ,  - ∈ Y: 

P(pp, *, +, -, %)  ⇾ succinct proof  /

V(pp, comf , +, -, /)  ⇾ accept/reject

(()) = + and ( ∈ ℱ and
commit(pp, (, .) = comf



Examples of functional commitments
Polynomial commitment schemes:    [KZG’10, …]

• A functional commitment for the family  ℱ = 8!
(#$)

,

⟹ prover commits to a univariate polynomial,
later, can verifiably open the polynomial at any  + ∈ 8!

Our question:    how to commit to a general arithmetic circuit?



An example polynomial commitment

Dory: (eprint/2020/1274)

• transparent setup:   no secret randomness in setup

• comf is a single group element   (independent of degree /)

• eval proof size for * ∈ 8!
(#$)

, is   O(log :)   group elements

• eval verify time is  O(log :)          Prover time:   ;(:)

Can we do the same for a general arithmetic circuit?  



Note:  a dual concept  [Libert-Romana-Yung’16, … ]

Input-hiding functional commitment for < :
Prover Verifier

< ∈ =
(secret)

com! ⇽ commit(+)

* ∈ ℱ

- ∈ .,     zk-proof  / that *(+) = - accept/reject

com"

Efficiently implied by a zk-SNARK.  Papers focus on weaker assumptions.



Constructing function-hiding 
functional commitments



A trivial construction:  small domain
1: = ⇾ 5! where = = {1,2, … , A}

H(0(1),r1) H(0(2),r2) H(0(3),r3) H(((4),r4) H(0 5 − 1 ,r) H(0(5),r)…
> > >

> >
>

comf (Merkle root)



A trivial construction:  small domain
1: = ⇾ 5! where = = {1,2, … , A}

H(0(1),r1) H(0(2),r2) H(0(3),r3) H(0(7),r4) H(0 5 − 1 ,r) H(0(5),r)…
> > >

> >
>

comf (Merkle proof)

To prove   - = *(3) send  / = (r3,  green nodes)

H(0(7),r4)

What about functions with a super-poly domain size ??



Another trivial construction
Prover Verifier

' ∈ (
(secret)

comf ⇽ SHA256(⟨*⟩, %)

+ ∈ ,

- ∈ .,     /

generic zk-proof that Prover knows (*, %) s.t.

com! = SHA256(⟨(⟩, .) and   (()) = + and  ( ∈ ℱ

accept/reject

comf

The problem:   inefficient!       Can we do better?



Review: a preprocessing SNARK for a circuit !
A succinct preprocessing argument system is a triple  (S,  P,  V):

• S(!)  ⇾ public parameters  (#!, #")  for prover and verifier

• P(#!,$%, ')  ⇾ short proof  ( ; |(| = +( -./ |!| , 0)

• V(#",$%, 2)    fast to verify ;   time(V) = +( 34 , -./ |!| , 0)

why preprocess !??short “summary” of :

proof that C(DE,F) = 0



Review: a preprocessing SNARK for a circuit !
A succinct preprocessing argument system is a triple  (S,  P,  V):

• S(!)  ⇾ public parameters  (#!, #")  for prover and verifier

• P(#!,$%, ')  ⇾ short proof  ( ; |(| = +( -./ ! , 0)

• V(#",$%, 2)    fast to verify ;   time(V) = +( 34 , -./ |!| , 0)
SNARK: (S, P, V) is complete,  knowledge sound,  and  succinct

zk-SNARK: (S, P, V) is a SNARK and is zero knowledge



(Universal) preprocessing zk-SNARK  ⟹ functional commitment?

Prover Verifier

' ∈ (
(secret)

C& +, - ∶= *(+) − -

(J", J#) ⇽ J(C&)

comf ⇽ J' (called an index key)

+ ∈ ,

- ∈ .,     / ⇽ P(J", +, - , . )
/ :  zk-SNARK proof that   :!(), +) = 0

comf

Problems: (1)  J' may not be a hiding commitment to  *

(2)  what if  C& is malformed?     (i.e.  ' ∉ ()

V(=",(), +), >)



The problem

Problem 1:  J' may not be a hiding commitment to  *

• Easily solved by adding a blinding step in J(C&, %)      (see paper)

hidden inputs

Prover can prove  ' N = O( and   ' N = O) !!

(()):

more generally

Suppose:  :!(0, +") = :!(0, +#) = 0

Problem 2:  committed  ?$ @, A ∶= 0 @ − A is malformed  (0 ∉ D)



What to do?   Proof of function relation  (PFR)
Prover Verifier

' ∈ (
(secret)

(J", J#) ⇽ J(C&, %)

comf ⇽ J' comf

PFR   /
accept/reject

Prover knows a witness  (*,")  s.t.

* ∈ ℱ and      (⋅ , com!)= J(C&, %)

Challenge:  build efficient PFR for common preprocessing zk-SNARKs



The Marlin and Plonk zk-SNARKs  [CHMMVW’19, GWC’19] 

Plonk:   circuit C& is represented as an arithmetic circuit of size ≤ R

• J':  a poly. commitment to two univariate polynomials

• Our PFR proves:   J' commits to a DAG with no hidden inputs

Marlin:  circuit C& is represented as an R1CS program (S, T, C)

• J':  a poly. commitment to nine univariate polynomials (unoptimized)

• Our PFR (11KB) proves:  J' commits to matrices S, T, C

so that for every  + there is a unique satisfying  -



Marlin: Proof of function relation

R1CS program for a circuit C&:    

represent C& as matrices  S, T, C ∈ 8!*×, s.t.

C&(+, -) = 0 iff ∃V: SX ∘ TX = (CX) where  X =

Thm: (S, T, C) defines a function *: , ⇾ . whenever

Z,[ are lower triangular  and  \ is diagonal

<latexit sha1_base64="C7imaGGLoaPDj2UZKx3k6j8rEGA=">AAACEnicbVDLSgMxFM3UV62vqks3wSLopsxIUZdFNy4r2Ad0SslkbtvQTGZIMtoy9Bvc+CtuXCji1pU7/8ZMO4i2Hkg4nHMv997jRZwpbdtfVm5peWV1Lb9e2Njc2t4p7u41VBhLCnUa8lC2PKKAMwF1zTSHViSBBB6Hpje8Sv3mHUjFQnGrxxF0AtIXrMco0UbqFk9cD/pMJF5AtGSjCR5h18X36TfGLgj/x+kWS3bZngIvEicjJZSh1i1+un5I4wCEppwo1XbsSHcSIjWjHCYFN1YQETokfWgbKkgAqpNMT5rgI6P4uBdK84TGU/V3R0ICpcaBZyrNfgM176Xif1471r2LTsJEFGsQdDaoF3OsQ5zmg30mgWo+NoRQycyumA6IJFSbFAsmBGf+5EXSOC07Z+XKTaVUvcziyKMDdIiOkYPOURVdoxqqI4oe0BN6Qa/Wo/VsvVnvs9KclfXsoz+wPr4BCSKduA==</latexit>2

4
x
w
y

3

5

⇒ need zk-SNARK that a committed matrix is lower triangular / diagonal



Marlin: Proof of function relation
Committing to a (sparse) matrix   S ∈ 8!*×, :

• Three polynomials    %]V, ^]_, X`_ ∈ 8! [,]
%]V(c), ^]_(c), X`_(c):   encode c-th non-zero element

• J' contains poly. commitments to these three polynomials

Proof of diagonality:   require that  commit(^]_) = commit(%]V)  

Proof of lower triangular:   prove that   ^]_(c) ≤ %]V(c) for all E ∈ Ω



How?

See paper

https://eprint.iacr.org/2021/1342



End result

Lots more to do:

• Efficient ZK proof of algorithmic fairness

• Efficient proof of function relation for other SNARKs

com"
Ensure orgs make decisions

uniformly across a population



THE  END

https://eprint.iacr.org/2021/1342


