

How to Commit to a Function

Dan Boneh Wilson Nguyen Alex Ozdemir

Stanford University

https://eprint.iacr.org/2021/1342

Cryptography: application areas

Traditional applications of Cryptography: Internet Security

 \Rightarrow <u>secure communication</u>: encryption, key exchange, etc.

More recent applications of Cryptography: Blockchain applications

⇒ <u>data integrity</u>: signatures, commitments, ZK proofs, ...

The Science of Blockchains:

Economics, Distributed Systems, Cryptography, Prog. Lang.

The Science of Blockchain Conference 2022 (SBC'22)

Arrillaga Alumni Center, Stanford University Aug. 29 - 31, 2022

Committing to a Function

Recall: basic commitment schemes

Two algorithms:

- $commit(m, r) \rightarrow com$ $(m \in \mathcal{M}, r \text{ random in } \mathcal{R})$
- $verify(m, com, r) \rightarrow accept or reject$

Basic properties:

- **binding**: cannot produce two valid openings for *com*.
- hiding: *com* reveals nothing about committed data *m*

A standard construction

Fix a hash function $H: \mathcal{M} \times \mathcal{R} \to C$

 $commit(m,r): \quad com \leftarrow H(m,r)$ $verify(m, com, r): \quad accept if com = H(m,r)$

Hiding and Binding for a suitable function H

Committing to a function

Fix a family of functions
$$\mathcal{F} = \{f: X \rightarrow Y\}$$

Examples:

- $\mathbb{F}_p^{(\leq d)}[X]$: all polynomials in $\mathbb{F}_p[X]$ of degree $\leq d$
- $C_s = \{f : \mathbb{F}_p^n \to \mathbb{F}_p\}$: arithmetic circuits of size $\leq s$

Committing to a function

Applications: a verifiably uniform policy

... but is the function fair ??

Did Bank commit to a "fair" function ?

Suppose the bank commits to f. Is f fair ??

An unfair f (user,data): if (user == 'dan') return("perfect score") else return \hat{f} (data)

What is a fair function?

• Several criteria developed by the field of *algorithmic fairness*

Is the function "fair" ?

Option 1: Trusted auditor(s)

• Checks f and signs **com**_f if f is "fair"

Option 2: Zero knowledge proof of fairness

- Attach ZK proof π to com_f . Anyone can verify proof.
- A good direction for future research

... back to committing to a function: syntax

A (function-hiding) **functional commitment** scheme for \mathcal{F} :

- <u>setup</u>(λ) $\rightarrow pp$, outputs public parameters pp
- <u>commit(pp, f, r)</u> \rightarrow **com**_f commitment to $f \in \mathcal{F}$ with $r \in \mathcal{R}$ a **hiding** and **binding** commitment scheme for the set \mathcal{F}
- <u>eval(Prover P, verifier V)</u>: for a given com_f and $x \in X$, $y \in Y$: P(pp, f, x, y, r) \rightarrow succinct proof π V(pp, com_f , x, y, π) \rightarrow accept/reject $f(x) = y \text{ and } f \in \mathcal{F} \text{ and}$ $commit(pp, f, r) = com_f$

Examples of functional commitments

Polynomial commitment schemes: [KZG'10, ...]

- A functional commitment for the family $\mathcal{F} = \mathbb{F}_p^{(\leq d)}[X]$
 - \Rightarrow prover commits to a univariate polynomial, later, can verifiably open the polynomial at any $x \in \mathbb{F}_p$

Our question: how to commit to a general arithmetic circuit?

An example polynomial commitment

Dory: (eprint/2020/1274)

- transparent setup: no secret randomness in setup
- com_f is a single group element (independent of degree d)
- eval proof size for $f \in \mathbb{F}_p^{(\leq d)}[X]$ is $O(\log d)$ group elements
- eval verify time is O(log d)

Prover time:

Can we do the same for a general arithmetic circuit?

Note: a dual concept [Libert-Romana-Yung'16, ...]

<u>Input-hiding</u> functional commitment for ${\cal F}$:

Efficiently implied by a zk-SNARK. Papers focus on weaker assumptions.

Constructing function-hiding functional commitments

A trivial construction: small domain

A trivial construction: small domain

 $H(f(2),r_2)$

 $H(f(1),r_1)$

What above fynetis (3) with adsurper (polygoeen anodeze)??

 $H(f(3),r_3)$ $H(f(4),r_4)$ ••• H(f(n-1),r)

 $H(\boldsymbol{f}(\boldsymbol{n}),r)$

Another trivial construction

The problem: inefficient! Can we do better?

Review: a preprocessing SNARK for a circuit C

A succinct preprocessing argument system is a triple (S, P, V):

•
$$S(C) \rightarrow \text{public pa}$$
 proof that $C(st, w) = 0$ ver and verifier
• $P(S_p, st, w) \rightarrow \text{short proof } \pi$; $|\pi| = O(\log(|C|), \lambda)$
• $V(S_v, st, \pi)$ fast to verify ; time(V) = $O(|st|, \log(|C|), \lambda)$
short "summary" of C vhy preprocess C??

Review: a preprocessing SNARK for a circuit C

A succinct preprocessing argument system is a triple (S, P, V):

- **S**(*C*) \rightarrow public parameters (*S*_{*p*}, *S*_{*v*}) for prover and verifier
- $P(S_p, st, w) \rightarrow \underline{short} \operatorname{proof} \pi ; \quad |\pi| = O(\log(|C|), \lambda)$

• $V(S_v, st, \pi)$ <u>fast to verify</u>; time(V) = $O(|st|, log(|C|), \lambda)$

SNARK: (S, P, V) is **complete**, **knowledge sound**, and **succinct zk-SNARK:** (S, P, V) is a SNARK and is **zero knowledge**

(Universal) preprocessing zk-SNARK ⇒ functional commitment?

Problems: (1) S_v may not be a <u>hiding</u> commitment to f(2) what if C_f is malformed? (i.e. $f \notin \mathcal{F}$)

The problem

Problem 1: S_v may not be a <u>hiding</u> commitment to f

• Easily solved by adding a blinding step in $S(C_f, r)$ (see paper)

Problem 2: committed $C_f(x, y) := f(x) - y$ is malformed $(f \notin \mathcal{F})$ hidden inputsmore generally $f(x): x = + \longrightarrow y$ Suppose: $C_f(0, y_0) = C_f(0, y_1) = 0$ Prover can prove $f(0) = y_0$ and $f(0) = y_1$!!

What to do? Proof of function relation (PFR)

Challenge: build efficient PFR for common preprocessing zk-SNARKs

<u>Plonk</u>: circuit C_f is represented as an arithmetic circuit of size $\leq s$

- S_{v} : a poly. commitment to two univariate polynomials
- **Our PFR proves**: S_v commits to a DAG with no hidden inputs

<u>Marlin</u>: circuit C_f is represented as an **R1CS program** (A, B, C)

- S_{v} : a poly. commitment to nine univariate polynomials (unoptimized)
- **Our PFR (11KB) proves**: S_v commits to matrices A, B, Cso that for every x there is a <u>unique</u> satisfying y

Marlin: Proof of function relation

R1CS program for a circuit C_f :

represent C_f as matrices $A, B, C \in \mathbb{F}_p^{n \times m}$ s.t.

$$C_f(x,y) = 0$$
 iff $\exists w: (Av) \circ (Bv) = (Cv)$ where $v = \begin{vmatrix} x \\ w \\ y \end{vmatrix}$

<u>Thm</u>: (A, B, C) defines a function $f: X \rightarrow Y$ whenever

A, B are lower triangular and C is diagonal

 \Rightarrow need zk-SNARK that a committed matrix is lower triangular / diagonal

Marlin: Proof of function relation

Committing to a (sparse) matrix $A \in \mathbb{F}_p^{n \times m}$:

- Three polynomials row, col, val $\in \mathbb{F}_p[X]$ row(i), col(i), val(i): encode *i*-th non-zero element
- S_{v} contains poly. commitments to these three polynomials

Proof of diagonality: require that *commit(col) = commit(row)*

Proof of lower triangular: prove that $col(i) \le row(i)$ for all $i \in \Omega$

See paper

https://eprint.iacr.org/2021/1342

End result

Ensure orgs make decisions uniformly across a population

Lots more to do:

- Efficient ZK proof of *algorithmic fairness*
- Efficient proof of function relation for other SNARKs

https://eprint.iacr.org/2021/1342