
How to Commit to a Function

Dan Boneh Wilson Nguyen Alex Ozdemir

Stanford University

https://eprint.iacr.org/2021/1342

Cryptography: application areas

Traditional applications of Cryptography: Internet Security

⇒ secure communication: encryption, key exchange, etc.

More recent applications of Cryptography: Blockchain applications

⇒ data integrity: signatures, commitments, ZK proofs, …

The Science of Blockchains:

Economics, Distributed Systems, Cryptography, Prog. Lang.

Committing to a Function

Recall: basic commitment schemes

Two algorithms:

• commit(!, ") ⇾ com (" ∈ ℳ, % random in ℛ)

• verify(!, com, ") ⇾ accept or reject

Basic properties:

• binding: cannot produce two valid openings for com.

• hiding: com reveals nothing about committed data !

A standard construction

Fix a hash function $:ℳ×ℛ➝)

commit(!, "): com← $(!, ")
verify(!, com, "): accept if com = $(!, ")

Hiding and Binding for a suitable function $

Committing to a function

Fix a family of functions ℱ = {1: 2 ⇾ 3}

Examples:

• 5!(#$) 2 : all polynomials in 5![X] of degree ≤ 9

• :& = {1: 5!' ⇾ 5!} : arithmetic circuits of size ≤ ;

Committing to a function
Prover Verifier

' ∈ (
(secret)

comf ⇽ commit(*)

+ ∈ ,

- ∈ ., zk-proof /
accept or

reject

comf

proof that: *(+) = - and *∈ ℱ

Applications: a verifiably uniform policy
secret

credit score
function

!:
dalice = financial data

scorealice = *(dalice)

dbob

scorebob = *(dbob)

Did the bank use
the same function

for both of us?

com!

/a

/b

Verify /a

Verify /b

reveals noting else
about the function

… but is the function fair ??

Did Bank commit to a “fair” function ?

Suppose the bank commits to *. Is * fair ??

An unfair *(user,data):

if (user == ‘dan’) return(“perfect score”)

else return 4*(data)

What is a fair function?

• Several criteria developed by the field of algorithmic fairness

Is the function “fair” ?
Option 1: Trusted auditor(s)

• Checks * and signs com! if * is “fair”

Option 2: Zero knowledge proof of fairness

• Attach ZK proof / to comf . Anyone can verify proof.

• A good direction for future research

… back to committing to a function: syntax
A (function-hiding) functional commitment scheme for ℱ:

• setup(5) ⇾ pp, outputs public parameters pp

• commit(pp, *, %) ⇾ comf commitment to * ∈ ℱ with % ∈ ℛ

a hiding and binding commitment scheme for the set ℱ

• eval(Prover P, verifier V): for a given comf and + ∈ , , - ∈ Y:

P(pp, *, +, -, %) ⇾ succinct proof /

V(pp, comf , +, -, /) ⇾ accept/reject

(()) = + and (∈ ℱ and
commit(pp, (, .) = comf

Examples of functional commitments
Polynomial commitment schemes: [KZG’10, …]

• A functional commitment for the family ℱ = 8!
(#$)

,

⟹ prover commits to a univariate polynomial,
later, can verifiably open the polynomial at any + ∈ 8!

Our question: how to commit to a general arithmetic circuit?

An example polynomial commitment

Dory: (eprint/2020/1274)

• transparent setup: no secret randomness in setup

• comf is a single group element (independent of degree /)

• eval proof size for * ∈ 8!
(#$)

, is O(log :) group elements

• eval verify time is O(log :) Prover time: ;(:)

Can we do the same for a general arithmetic circuit?

Note: a dual concept [Libert-Romana-Yung’16, …]

Input-hiding functional commitment for < :
Prover Verifier

< ∈ =
(secret)

com! ⇽ commit(+)

* ∈ ℱ

- ∈ ., zk-proof / that *(+) = - accept/reject

com"

Efficiently implied by a zk-SNARK. Papers focus on weaker assumptions.

Constructing function-hiding
functional commitments

A trivial construction: small domain
1: = ⇾ 5! where = = {1,2, … , A}

H(0(1),r1) H(0(2),r2) H(0(3),r3) H(((4),r4) H(0 5 − 1 ,r) H(0(5),r)…
> > >

> >
>

comf (Merkle root)

A trivial construction: small domain
1: = ⇾ 5! where = = {1,2, … , A}

H(0(1),r1) H(0(2),r2) H(0(3),r3) H(0(7),r4) H(0 5 − 1 ,r) H(0(5),r)…
> > >

> >
>

comf (Merkle proof)

To prove - = *(3) send / = (r3, green nodes)

H(0(7),r4)

What about functions with a super-poly domain size ??

Another trivial construction
Prover Verifier

' ∈ (
(secret)

comf ⇽ SHA256(⟨*⟩, %)

+ ∈ ,

- ∈ ., /

generic zk-proof that Prover knows (*, %) s.t.

com! = SHA256(⟨(⟩, .) and (()) = + and (∈ ℱ

accept/reject

comf

The problem: inefficient! Can we do better?

Review: a preprocessing SNARK for a circuit !
A succinct preprocessing argument system is a triple (S, P, V):

• S(!) ⇾ public parameters (#!, #") for prover and verifier

• P(#!,$%, ') ⇾ short proof (; |(| = +(-./ |!| , 0)

• V(#",$%, 2) fast to verify ; time(V) = +(34 , -./ |!| , 0)

why preprocess !??short “summary” of :

proof that C(DE,F) = 0

Review: a preprocessing SNARK for a circuit !
A succinct preprocessing argument system is a triple (S, P, V):

• S(!) ⇾ public parameters (#!, #") for prover and verifier

• P(#!,$%, ') ⇾ short proof (; |(| = +(-./ ! , 0)

• V(#",$%, 2) fast to verify ; time(V) = +(34 , -./ |!| , 0)
SNARK: (S, P, V) is complete, knowledge sound, and succinct

zk-SNARK: (S, P, V) is a SNARK and is zero knowledge

(Universal) preprocessing zk-SNARK ⟹ functional commitment?

Prover Verifier

' ∈ (
(secret)

C& +, - ∶= *(+) − -

(J", J#) ⇽ J(C&)

comf ⇽ J' (called an index key)

+ ∈ ,

- ∈ ., / ⇽ P(J", +, - , .)
/ : zk-SNARK proof that :!(), +) = 0

comf

Problems: (1) J' may not be a hiding commitment to *

(2) what if C& is malformed? (i.e. ' ∉ ()

V(=",(), +), >)

The problem

Problem 1: J' may not be a hiding commitment to *

• Easily solved by adding a blinding step in J(C&, %) (see paper)

hidden inputs

Prover can prove ' N = O(and ' N = O) !!

(()):

more generally

Suppose: :!(0, +") = :!(0, +#) = 0

Problem 2: committed ?$ @, A ∶= 0 @ − A is malformed (0 ∉ D)

What to do? Proof of function relation (PFR)
Prover Verifier

' ∈ (
(secret)

(J", J#) ⇽ J(C&, %)

comf ⇽ J' comf

PFR /
accept/reject

Prover knows a witness (*,") s.t.

* ∈ ℱ and (⋅ , com!)= J(C&, %)

Challenge: build efficient PFR for common preprocessing zk-SNARKs

The Marlin and Plonk zk-SNARKs [CHMMVW’19, GWC’19]

Plonk: circuit C& is represented as an arithmetic circuit of size ≤ R

• J': a poly. commitment to two univariate polynomials

• Our PFR proves: J' commits to a DAG with no hidden inputs

Marlin: circuit C& is represented as an R1CS program (S, T, C)

• J': a poly. commitment to nine univariate polynomials (unoptimized)

• Our PFR (11KB) proves: J' commits to matrices S, T, C

so that for every + there is a unique satisfying -

Marlin: Proof of function relation

R1CS program for a circuit C&:

represent C& as matrices S, T, C ∈ 8!*×, s.t.

C&(+, -) = 0 iff ∃V: SX ∘ TX = (CX) where X =

Thm: (S, T, C) defines a function *: , ⇾ . whenever

Z,[are lower triangular and \ is diagonal

<latexit sha1_base64="C7imaGGLoaPDj2UZKx3k6j8rEGA=">AAACEnicbVDLSgMxFM3UV62vqks3wSLopsxIUZdFNy4r2Ad0SslkbtvQTGZIMtoy9Bvc+CtuXCji1pU7/8ZMO4i2Hkg4nHMv997jRZwpbdtfVm5peWV1Lb9e2Njc2t4p7u41VBhLCnUa8lC2PKKAMwF1zTSHViSBBB6Hpje8Sv3mHUjFQnGrxxF0AtIXrMco0UbqFk9cD/pMJF5AtGSjCR5h18X36TfGLgj/x+kWS3bZngIvEicjJZSh1i1+un5I4wCEppwo1XbsSHcSIjWjHCYFN1YQETokfWgbKkgAqpNMT5rgI6P4uBdK84TGU/V3R0ICpcaBZyrNfgM176Xif1471r2LTsJEFGsQdDaoF3OsQ5zmg30mgWo+NoRQycyumA6IJFSbFAsmBGf+5EXSOC07Z+XKTaVUvcziyKMDdIiOkYPOURVdoxqqI4oe0BN6Qa/Wo/VsvVnvs9KclfXsoz+wPr4BCSKduA==</latexit>2

4
x
w
y

3

5

⇒ need zk-SNARK that a committed matrix is lower triangular / diagonal

Marlin: Proof of function relation
Committing to a (sparse) matrix S ∈ 8!*×, :

• Three polynomials %]V, ^]_, X`_ ∈ 8! [,]
%]V(c), ^]_(c), X`_(c): encode c-th non-zero element

• J' contains poly. commitments to these three polynomials

Proof of diagonality: require that commit(^]_) = commit(%]V)

Proof of lower triangular: prove that ^]_(c) ≤ %]V(c) for all E ∈ Ω

How?

See paper

https://eprint.iacr.org/2021/1342

End result

Lots more to do:

• Efficient ZK proof of algorithmic fairness

• Efficient proof of function relation for other SNARKs

com"
Ensure orgs make decisions

uniformly across a population

THE END

https://eprint.iacr.org/2021/1342

